This study explores the river-flow-induced impacts on the performance of machine learning models applied for forecasting of water quality parameters in the coastal waters in Hilo Bay, Pacific Ocean. For this purpose, hourly recorded water quality parameters of salinity, temperature and turbidity as well as the flow data of the Wailuku River were used. Several machine learning models including artificial neural network, extreme learning machine and support vector regression have been employed to investigate the river-flow-induced impact on the water quality parameters from the current time up to 2 h ahead. Following the input structure of the machine learning models, two separate models based on including and excluding the river flow were developed for each variable to quantify the importance of the flow discharge on the accuracy of the forecasting models. The performance of different machine learning models was found to be close to each other and showing similar pattern considering accuracy and uncertainty of the forecasts. The results revealed that flow discharge influenced the water salinity and turbidity of the bay in which the models including the river flow as input variables had better performance compared with those excluding the flow time series. Among the water quality parameters investigated in this research, river flow made the most and least improvement on the efficiency of the models applied for forecasting of turbidity and water temperature, respectively. Overall, it was observed that water quality parameters can be properly forecasted up to several hours ahead providing a potentially valuable tool for environmental management and monitoring in coastal areas.
This study explores two ideas to made an improvement on the artificial neural network (ANN)-based models for suspended sediment forecasting in several time steps ahead. In this regard, both observed and forecasted time series are incorporated as input variables of the models when applied for more than one lead time. Secondly, least-square ensemble models employing multiple wavelet-ANN models are developed to increase the performance of the single model. For this purpose, different wavelet families are linked with the ANN model and performance of each model is evaluated using error measures. The Skagit River near Mount Vernon in Washington county is selected as the case study. The daily flow discharge and suspended sediment concentration (SSC) in the current day are considered as input variables to predict suspended sediment concentration in the next day. For more lead times, the input structure is updated by adding the forecast of SSC in the previous time step. Results of this study demonstrate that incorporating both observed and predicted variables in the input structure improves performance of conventional models in which those only employ observed time series as input variables. Moreover, ensemble model developed for each lead time outperforms the best single wavelet-ANN model which indicates superiority of the ensemble model over the other one. Findings of this study reveal that acceptable forecasts of daily suspended sediment concentration up to 3 days in advance can be achieved using the proposed methodology.
Accurate prediction of longitudinal dispersion coefficient (K) is a key element in studying of pollutant transport in rivers when the full cross sectional mixing has occurred. In this regard, several research studies have been carried out and different equations have been proposed. The predicted values of K obtained by different equations showed a great amount of uncertainty due to the complexity of the phenomenon. Therefore, there is still a need to make an improvement on the existing predictive models. In this study, a multi-objective particle swarm optimization (PSO) technique was used to derive new equations for predicting longitudinal dispersion coefficient in natural rivers. To do this, extensive field data, including hydraulic and geometrical characteristics of different rivers were applied. The results of this study were compared with those of the previous studies using the statistical error measures. The comparison revealed that the proposed model is superior to the previous ones. According to this study, PSO algorithm can be applied to improve the performance of the predictive equations by finding optimum values of the coefficients. The proposed model can be successfully applied to estimate the longitudinal dispersion coefficient for a wide range of rivers' characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.