Identifies recent challenges facing the construction industry and recognises current attempts of exploring distributed ledger technology (DTL) as part of the solution to some of these challenges. Performs a systematic review of DLT uses in the built environment and construction industry and identifies seven distinct areas of applications. Introduces an extended socio-technical framework for implementation of DLT into the construction industry including two conceptual models: the DLT Four-Dimensional Model, and the DLT Actors Model. Compiles an extensive list of challenges and opportunities presented by DLT across the four dimensions (technical, process, policy, social) to offer a state-of-the-art review of its current state. Presents a decision support tool to appraise the suitability of use cases for DLT applications and demonstrates it with three use cases.
BIM in facilities management applications: A case study of a large university complexPurpose: Building Information Modelling (BIM) in Facilities Management (FM) applications is an emerging area of research based on the theoretical proposition that BIM information, generated and captured during the lifecycle of a facility, can improve building operation. Using this proposition as a starting point, this research aims to investigate the value of BIM and the challenges affecting its adoption in FM applications.Design/methodology/approach: Two inter-related research methods are utilised. The literature is utilised to identify the application areas, value and challenges of BIM in FM. Due to the lack of case studies identified in the literature review, and to provide empirical evidence of the value and challenges of BIM in FM, a case study of Northumbria University's city campus, is used to empirically explore the value and challenges of BIM in FM. Findings:The results demonstrated that the value of BIM in FM stems from improvement to current manual processes of information handover; improvement to the accuracy of FM data, improvement to the accessibility of FM data and efficiency increase in work order execution. The main challenges were the lack of methodologies that demonstrate the tangible benefits of BIM in FM, the limited knowledge of implementation requirement including BIM for FM modelling requirements, the interoperability between BIM and FM technologies, the presence of disparate operational systems managing the same building and finally, the shortage of BIM skills in the FM industry.Originality/value: There is lack of real-life cases on BIM in FM especially for existing assets, despite new constructions representing only 1-2 % of the total building stock in a typical year. The originality of this paper stems from both adding a real life case study of BIM in FM in existing estate and providing empirical evidence of both the value and challenges of BIM in FM applications.
The adoption of Building Information Modelling (BIM) across markets is a pertinent topic for academic discourse and industry attention. This is evidenced by the unrelenting release of national BIM initiatives; new BIM protocols; and candidate international standards. This paper is the second part of an ongoing Macro BIM Adoption study: the first paper "Macro BIM Adoption: Conceptual Structures" (Succar and Kassem, 2015) introduced five conceptual models for assessing macro BIM adoption across markets and informing the development of BIM adoption policies. This second paper clarifies how these models are validated through capturing the input of 99 experts from 21 countries using a survey tool; highlights the commonalities and differences between sample countries with respect to BIM adoption; and introduces sample tools and templates for either developing or calibrating BIM adoption policies. Survey data collected indicate that all five conceptual models demonstrate high levels of 'clarity', 'accuracy' and 'usefulness', the three metrics measured. They also indicate (1) varying rates of BIM diffusion across countries with BIM capability near the lower-end of the spectrum; (2) varying levels of BIM maturity withthe mean of-most macro BIM components falling below the medium level; (3) varying diffusion dynamics across countries with the prevalence of the middle-out diffusion dynamic; (4) varying policy actions across countries with a predominance of the passive policy approach; and (5) varying distribution of diffusion responsibilities among player groups with no detectable dominant pattern across countries. The two papers provide an opportunity to improve our understanding of BIM adoption dynamics across countries. Future research can build upon the models and tools introduced to enable (a) an expansion of benchmarking data through surveying additional countries; (b) identifying BIM adoption changes in surveyed countries over time; (c) correlating changes in adoption rates/patterns with policy interventions; (d) identifying BIM policy variations within the same country; (e) establishing statistical correlations between the conceptual models; and (f) developing new tools to facilitate BIM policy development and encouraging BIM adoption.
Building Information Modelling (BIM) is an innovation that is transforming practices within the Architectural, Engineering, Construction and Operation (AECO) sectors. Many studies have investigated the process of BIM adoption and diffusion and in particular, the drivers affecting adoption at different levels, ranging from individual and team through organisations and supply chains to whole market level. However, in-depth investigations of the stages of the BIM adoption process and the drivers, factors and determinants affecting such stages are still lacking. A comprehensive classification and integration of adoption drivers and factors is absent as these are disjointedly identified across disparate studies. There is also limited attention to the key terms and concepts (i.e. readiness, implementation, diffusion, adoption) in this area of study. This aim in this paper is twofold: (1) to develop and validate a Unified BIM Adoption Taxonomy (UBAT); and (2) to identify the taxonomy's constructs (i.e. three driver clusters and their 17 factors) that have influence on the first three stages of the BIM adoption process namely, awareness, interest, and decision stages, and compare their effects on each of the stages. The research uses: a systematic literature review and knowledge synthesisation to develop the taxonomy; a confirmatory factor analysis for its validation; and an ordinal logistic regression to test the effect of the UBAT's constructs on the BIM adoption process within the UK Architectural sector using a sample of 177 organisations. The paper is primarily intended to enhance the reader's understanding of the BIM adoption process and the constructs that influence its stages. The taxonomy and its sets of drivers and determinants can be used to perform various analyses of the BIM adoption process, delivering evidence and insights for decision makers within organisations and across whole market when formulating BIM diffusion strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.