A cooling system employed in an automobile is to maintain the desired coolant temperature thus ensuring for optimum engine operation. Forced convection obtained by means of a water pump will enhance the cooling effect. Thus it is necessary to understand the system’s pump operation and be able to provide for the ultimate cooling of the engine. The objective of this laboratory investigation is to study the water pump characteristics of an engine cooling system. The crucial water pump parameters are the head, power, and its efficiency. In order to investigate the water pump characteristic a dedicated automotive cooling simulator test rig was designed and developed. All of the data obtained are important towards designing for a more efficient water pump such as electric pump that is independent of the power from the engine. In addition to this fact, the simulator test rig can also be used to investigate for any other parameters and products such as radiator performance and electric pump before installation in the actual engine cooling system. From the experiment conducted to simulate for the performance of a cooling system of a Proton Wira (4G15), the maximum power equals to 37 W which indicates the efficiency of the pump is relatively too low as compared to the typical power consume by the pump from the engine which are about 1 to 2 kW. Whereas the maximum power and efficiency obtained from the simulator test rig simulator is equals to 42 W and 15% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.