Abstract.A potential low cost and environmentally friendly supercapacitor has been prepared from Palm Kernel Shell Biochar (PKSB). In this study, physical and electrochemical properties of raw, activated and chemical treated (potassium hydroxide (KOH)) as supercapacitors such as high carbon content, high charge storage capacity and stable were evaluated. For physical analyses, the scanning electron microscopy (SEM) was used to study the surface morphology and surface area and porosity were measured using Brunaurer-Emmert-Teller (BET). The chemical treated PKSB shows the highest surface area values of 55.15 m 2 /g as compared to raw and activated samples with surface area are 0.17 m 2 /g and 19.32 m 2 /g, respectively. This is verified by in enhancement of capacitance achieved from 1.76 x10 -3 Fg -1 for the activated biochar and 1.87x10 -6 Fg -1 for untreated PKSB showed by Raman spectroscopy. This enhancement reflected the charge storage capacity is attributed to the creation of broad distribution in pore size and a larger surface area. In addition, this phenomenon also supported by the electrochemical profiles through cyclic voltammogram (CV) measured by Potentiostat-Gavanostat (EIS). CV of the treated PKSB gave better square shape than the activated and raw biochar samples. These characterizations conclude that the raw palm kernel biochar need further treatment to become supercapacitor electrodes to replace activated carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.