Recently, agent-based software technology has received wide attention by the research community due to its valuable benefits, such as reducing the load on networks and providing an efficient solution for the transmission challenge problem. However, the major concern in building agent-based systems is related to the security of agents. In this paper, we explore the techniques used to build controls that guarantee both the protection of agents against malicious destination machines and the protection of destination machines against malicious agents. In addition, statistical-based analyses are employed to evaluate the level of maturity of the protection techniques to preserve the protection goals (the code and data, state, and itinerary of the agent), with and without the threat of attacks. Challenges regarding the security of agents are presented and highlighted by seven research questions related to satisfying cyber security requirements, protecting the visiting agent and the visited host machine from each other, providing robustness against advanced attacks that target protection goals, quantifying the security in agent-based systems, and providing features of self-protection and self-communication to the agent itself.
Breast cancer is the leading cause of death among women with cancer. Computer-aided diagnosis is an efficient method for assisting medical experts in early diagnosis, improving the chance of recovery. Employing artificial intelligence (AI) in the medical area is very crucial due to the sensitivity of this field. This means that the low accuracy of the classification methods used for cancer detection is a critical issue. This problem is accentuated when it comes to blurry mammogram images. In this paper, convolutional neural networks (CNNs) are employed to present the traditional convolutional neural network (TCNN) and supported convolutional neural network (SCNN) approaches. The TCNN and SCNN approaches contribute by overcoming the shift and scaling problems included in blurry mammogram images. In addition, the flipped rotation-based approach (FRbA) is proposed to enhance the accuracy of the prediction process (classification of the type of cancerous mass) by taking into account the different directions of the cancerous mass to extract effective features to form the map of the tumour. The proposed approaches are implemented on the MIAS medical dataset using 200 mammogram breast images. Compared to similar approaches based on KNN and RF, the proposed approaches show better performance in terms of accuracy, sensitivity, spasticity, precision, recall, time of performance, and quality of image metrics.
Location-based services (LBS) form the main part of the Internet of Things (IoT) and have received a significant amount of attention from the research community as well as application users due to the popularity of wireless devices and the daily growth in users. However, there are several risks associated with the use of LBS-enabled applications, as users are forced to send their queries based on their real-time and actual location. Attacks could be applied by the LBS server itself or by its maintainer, which consequently may lead to more serious issues such as the theft of sensitive and personal information about LBS users. Due to this fact, complete privacy protection (location and query privacy protection) is a critical problem. Collaborative (cache-based) approaches are used to prevent the LBS application users from connecting to the LBS server (malicious parties). However, no robust trust approaches have been provided to design a trusted third party (TTP), which prevents LBS users from acting as an attacker. This paper proposed a symbiotic relationship-based leader approach to guarantee complete privacy protection for users of LBS-enabled applications. Specifically, it introduced the mutual benefit underlying the symbiotic relationship, dummies, and caching concepts to avoid dealing with untrusted LBS servers and achieve complete privacy protection. In addition, the paper proposed a new privacy metric to predict the closeness of the attacker to the moment of her actual attack launch. Compared to three well-known approaches, namely enhanced dummy location selection (enhanced-DLS), hiding in a mobile crowd, and caching-aware dummy selection algorithm (enhanced-CaDSA), our experimental results showed better performance in terms of communication cost, resistance against inferences attacks, and cache hit ratio.
Location-based services (LBSs) have received a significant amount of recent attention from the research community due to their valuable benefits in various aspects of society. In addition, the dependency on LBS in the performance of daily tasks has increased dramatically, especially after the spread of the COVID-19 pandemic. LBS users use their real location to build LBS queries to take benefits. This makes location privacy vulnerable to attacks. The privacy issue is accentuated if the attacker is an LBS provider since all information about users is accessible. Moreover, the attacker can apply advanced attacks, such as map matching and semantic location attacks. In response to these issues, this work employs artificial intelligence to build a robust defense against advanced location privacy attacks. The key idea behind protecting the location privacy of LBS users is to generate smart dummy locations. Smart dummy locations are false locations with the same query probability as the real location, but they are far from both the real location and each other. Relying on the previous two conditions, the deep-learning-based intelligent finder ensures a high level of location privacy protection against advanced attacks. The attacker cannot recognize the dummies from the real location and cannot isolate the real location by a filtering process. In terms of entropy (the privacy protection metric), accuracy (the deep learning metric), and total execution time (the performance metric) and compared to the well-known DDA and BDA systems, the proposed system shows better results, where entropy = 15.9, accuracy = 9.9, and total execution time = 17 sec.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.