Several available methods, known in literatures, are available for solving nth order differential equations and their complexities differ based on the accuracy of the solution. A successful method, known to researcher in the area of computational electromagnetic and called the Method of Moment (MoM) is found to have its way in this domain and can be used in solving boundary value problems where differential equations are resulting. A simplified version of this method is adopted in this paper to address this problem, and two differential equations examples are considered to clarify the approach and present the simplicity of the method. As illustrated in this paper, this approach can be introduced along with other methods, and can be considered as an attractive way to solve differential equations and other boundary value problems.
With the growth of mobile data applications, the spectrum allocation is becoming very scarce. To ease congestion and boost speeds, cognitive radio (CR) is currently seen as a major solution and expected to be the key player in the new wireless technologies. In this paper, we will start by introducing the cognitive radio systems, followed by exploring the challenges in designing RF engine, along with an investigation of its antennas, amplifiers, oscillators, and the components that are expected to operate over a wide range of frequencies.
This paper presents a high efficiency Doherty power amplifier suitable for TV band applications. A class AB power amplifier is firstly implemented using a commercial GaN HEMT from Cree Incorporation, achieving a high power-added-efficiency of 77.78% and a 40.593 dBm output power with an associated gain of 21.65 dB. The Doherty amplifier has then been designed following the previous class AB scheme for the main amplifier and a class C scheme for the peak one. This amplifier attained a high power-added-efficiency of 81.94%, a 42.77 dBm output power, an associated gain of 21.32 dB, and an operating frequency bandwidth between 550 and 1000 MHz (58.06% fractional bandwidth) which made it suitable for TV band applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.