This paper studies scalar integral inequalities in one-dimensional bounded domains with polynomial integrands. We propose conditions to verify the integral inequalities in terms of differential matrix inequalities. These conditions allow for the verification of the inequalities in subspaces defined by boundary values of the dependent variables. The results are applied to solve integral inequalities arising from the Lyapunov stability analysis of partial differential equations. Examples illustrate the results.
We study one-dimensional integral inequalities, with quadratic integrands, on bounded domains. Conditions for these inequalities to hold are formulated in terms of function matrix inequalities which must hold in the domain of integration. For the case of polynomial function matrices, sufficient conditions for positivity of the matrix inequality and, therefore, for the integral inequalities are cast as semi-definite programs. The inequalities are used to study stability of linear partial differential equations.
A multi-agent partially observable Markov decision process (MPOMDP) is a modeling paradigm used for high-level planning of heterogeneous autonomous agents subject to uncertainty and partial observation. Despite their modeling efficiency, MPOMDPs have not received significant attention in safety-critical settings. In this paper, we use barrier functions to design policies for MPOMDPs that ensure safety. Notably, our method does not rely on discretizations of the belief space, or finite memory. To this end, we formulate sufficient and necessary conditions for the safety of a given set based on discrete-time barrier functions (DTBFs) and we demonstrate that our formulation also allows for Boolean compositions of DTBFs for representing more complicated safe sets. We show that the proposed method can be implemented online by a sequence of one-step greedy algorithms as a standalone safe controller or as a safety-filter given a nominal planning policy. We illustrate the efficiency of the proposed methodology based on DTBFs using a high-fidelity simulation of heterogeneous robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.