Cable-stayed bridges are important infrastructure facilities serving the world today. Therefore, their safety against earthquake ground motions is crucial. However, due to their long spans, the affecting seismic excitations might be spatially non-synchronous. This paper presents a study of the effect of non-synchronous seismic excitations on Aswan cable-stayed bridge located at southern Egypt. Nonlinear time history analysis was conducted on a three-dimensional finite element model of the bridge. The spatial variability was represented in terms of the wave passage effect which was simulated via different delay times between the arrivals of the ground motion to bridge supports. Results indicated that spatial variability of earthquake ground motion has, in general, a favorable effect on most bridge response parameters. This is attributed to the flexibility of the overall bridge provided by the flexibility of the bridge structural system and/or by existence of seismic isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.