The recent expansion of power-distribution networks has motivated many researchers to study how to minimize the costs of such projects. Although transmission towers present one of the main items in the network that greatly affect the project budget, there are no clear criteria or recommendations to select the optimum bracing system that minimizes the tower weight. This research presents recommendations to select the optimum configurations for latticed power-transmission towers, segment by segment, for certain loads, as well as the aspect ratio. The research started by generating a database with different segment configurations and their weights, and then three of the most famous AI techniques (GP, ANN and EPR) were used to generate models to calculate the weights of the segments. Studying these models led to the conclusion that K-shape bracing is better that X-shape bracing for segments with aspect ratios (H/B) less than 1.0. The generated models and conclusions were verified by using existing tower designs.
Composite steel beams are commonly used element in multistorey steel buildings to enhance floor economy and serviceability and provide more clear height. Due to the low level of stress in the webs of such beams, hybrid sections are used where the flanges have higher strength than the webs. A lot of earlier research was carried out to optimize the design of the hybrid and nonhybrid composite steel beams under both static loading and dynamic behavior. However, there is still a need to develop a more practical optimization method. The aim of this research is to develop simple and practical equations to determine the optimum cross section dimensions for both shored and unshored, simply supported, hybrid and nonhybrid, composite steel beam under static loads. To achieve that goal, a research program of two phases was carried out. The first phase was generating a database of 504 composite beams with different steel grades for flanges and webs, subjected to different values of bending moment. The cross section of each beam in the database was optimized using GRG technique to minimize the cost considering the unit price of each steel grade. In the second phase, the generated database was divided into training and validation subsets and used to develop two predictive models using Nonlinear Regression (NLR) technique and Artificial Neural Network (ANN) technique to predict the optimum cross section dimensions and hence the optimum weight and cost. The accuracies of the developed models were measured in terms of average error percent. NLR and ANN models showed average error percent of 16% and 11%, respectively.
During the past decade, composite steel-free deck bridges came to reality in Canada through the construction of five bridges. The new structural system enables the construction of a concrete deck that is totally devoid of all internal steel reinforcement. Traditionally, reinforced concrete bridge decks are designed to sustain loads in flexure. The steel-free deck bridge system develops internal compressive forces "internal arching," which leads to failure by punching shear at substantially higher loads than the flexural design load. The fibre-reinforced concrete deck is usually attached to the steel girders through flexible shear connectors. These steel girders are transversely tied together by steel straps and cross frames. In this paper, the concept of the new bridge system is briefly discussed. The generations of the deck slabs are introduced. Brief outlines of the bridges built to date with this new technology are presented. A three-dimensional finite element model is then proposed to study the behaviour of the main structural component of the new system. The model is verified against previous experimental results and is used to perform a parametric study on some aspects which are thought to significantly affect the behaviour of the new steel-free deck bridge system. Résumé : Durant la dernière décennie, les ponts à tablier composé sans acier sont devenus réalité au Canada grâce à la construction de cinq ponts. Ce nouveau système structural permet la construction d'un tablier en béton qui est complè-tement dépourvu de tout renforcement interne en acier. Traditionnellement, les tabliers de pont en béton armé sont conçus afin de supporter des charges en flexion. Le système de tablier de pont sans acier développe des forces internes en compression « cintrage interne » et résulte en une rupture par poinçonnement en cisaillement pour une charge substantiellement plus grande que les charges en flexion de conception. Le tablier en béton renforcé de fibres est habituellement attaché aux poutres d'acier à l'aide de connexions de cisaillement flexibles. Ces poutres d'acier sont attachées ensemble transversalement à l'aide de liens d'acier et de contreventements. Dans cet article, le concept de ce nouveau système est brièvement discuté. Les générations des tabliers en dalles sont introduites. Un bref aperçu des ponts construits à ce jour avec cette nouvelle technologie est présenté. Un modèle par éléments finis tirdimensionnel est par la suite proposé afin d'étudier le comportement des composants structurels principaux du nouveau système. Le modèle est confronté aux résultats expérimentaux obtenus par d'autres dans le passé. Ensuite, il est utilisé afin de performer une étude paramétrique sur quelques aspects qui sont suspectés d'affecter de façon significative le comportement de ce nouveau système de tablier de pont sans acier.
In-filled tubes section is a very successful configuration for axially loaded members such as columns and struts. Steel shell tube filled with concrete has many advantages, such as eliminating the need for shuttering, reinforcement bars or ties besides increasing both flexural and axial capacities and enhancing the ductility. The main disadvantage of in-filled tubes is the need for a shell thick enough to prevent the local buckling and hence the local decomposition. Previous studies tried to solve this problem using intermediate stiffeners or shear connectors. This research presents another approach to solve this problem using double cold-formed sigma-sections (face to face) as steel shell tubes. Sixteen specimens with different lengths, cross section dimensions and shell thicknesses were tested under both concentric and eccentric compression loads. Ultimate capacities, lateral deformations and normal strains were recorded. The theoretical capacities were calculated using AISC-LRDF-94, EN-1994-04 and CSI-COL software considering full composite action, and the deviations from the experimental results were 24%, 24% and 13%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.