The population models allow for a better understanding of the dynamical interactions with the environment and hence can provide a way for understanding the population changes. They are helpful in studying the biological invasions, environmental conservation and many other applications. These models become more complicated when accounting for the stochastic and/or random variations due to different sources. In the current work, a spectral technique is suggested to analyze the stochastic population model with random parameters. The model contains mixed sources of uncertainties, noise and uncertain parameters. The suggested algorithm uses the spectral decompositions for both types of randomness. The spectral techniques have the advantages of high rates of convergence. A deterministic system is derived using the statistical properties of the random bases. The classical analytical and/or numerical techniques can be used to analyze the deterministic system and obtain the solution statistics. The technique presented in the current work is applicable to many complex systems with both stochastic and random parameters. It has the advantage of separating the contributions due to different sources of uncertainty. Hence, the sensitivity index of any uncertain parameter can be evaluated. This is a clear advantage compared with other techniques used in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.