Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
▪ Abstract To assess the frequency and importance of reinforcement in nature we must begin by looking for its signature in the most likely places. Theoretical studies can pinpoint conditions that favor and inhibit reinforcement, and empirical studies can identify both how often these conditions occur and whether reinforcement results. We examine how well these tools have addressed these questions by searching for gaps and mismatches in theoretical and empirical studies of reinforcement. We concentrate on five areas: (a) a broad assessment of selection against interspecific mating, (b) the mode and genetic basis of nonrandom mating, (c) the geography of speciation, (d) divergent selection on mating cues, (e) and the genetics of reproductive isolation. We conclude that reinforcement has probably not been looked for where it is most likely to occur. We pinpoint however, many further areas of study that may ultimately provide a strong assessment of the importance of reinforcement in speciation. “The grossest blunder in sexual preference, which we can conceive of an animal making, would be to mate with a species different from its own and with which the hybrids are either infertile or, through the mixture of instincts and other attributes appropriate to different courses of life, at so serious a disadvantage as to leave no descendants.” — Fisher, 1930 pp. 130
Recent genetic studies have suggested that many genes contribute to differences between closely related species that prevent gene exchange, particularly hybrid male sterility and female species preferences. We have examined the genetic basis of hybrid sterility and female species preferences in Drosophila pseudoobscura and Drosophila persimilis, two occasionally hybridizing North American species. Contrary to findings in other species groups, very few regions of the genome were associated with these characters, and these regions are associated also with fixed arrangement differences (inversions) between these species. From our results, we propose a preliminary genic model whereby inversions may contribute to the speciation process, thereby explaining the abundance of arrangement differences between closely related species that co-occur geographically. We suggest that inversions create linkage groups that cause sterility to persist between hybridizing taxa. The maintenance of this sterility allows the species to persist in the face of gene flow longer than without such inversions, and natural selection will have a greater opportunity to decrease the frequency of interspecies matings.
Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.