The adsorption characteristics of pure water vapor onto two different types of silica gel at temperatures
from (298 to 338) K and at different equilibrium pressures between (500 and 7000) Pa were experimentally
studied by a volumetric technique. The thermophysical properties such as the skeletal density, Brunauer−Emmett−Teller surface area, pore size, pore volume, and total porosity of silica gel were determined.
The Tóth isotherm model is found to fit all of the experimental data within the experimental errors. The
experimental isotherms and the computed enthalpies of adsorption are compared with those of various
researchers and found to be consistent with a chiller manufacturer's data.
Background
Fanconi anemia (FA) is a heterogeneous inherited disorder clinically characterized by progressive bone marrow failure, congenital anomalies, and a predisposition to malignancies.
Objective
Determine, based on correction of cellular phenotypes, whether XRCC2 is a FA gene.
Methods
Cells (900677) from a previously identified patient with biallelic mutation of XRCC2, among other mutations, were genetically complemented with wild-type XRCC2.
Results
Wild-type XRCC2 corrects each of three phenotypes characteristic of FA cells, all related to the repair of DNA interstrand crosslinks, including increased sensitivity to mitomycin C (MMC), chromosome breakage, and G2-M accumulation in the cell cycle. Further, the p.R215X mutant of XRCC2, which is harbored by the patient, is unstable. This provides an explanation for the pathogenesis of this mutant, as does the fact that 900677 cells have reduced levels of other proteins in the XRCC2-RAD51B-C-D complex. Also, FANCD2 monoubiquitination and foci formation, but not assembly of RAD51 foci, are normal in 900677 cells. Thus, XRCC2 acts late in the FA-BRCA pathway as also suggested by hypersensitivity of 900677 cells to ionizing radiation. These cells also share milder sensitivities toward olaparib and formaldehyde with certain other FA cells.
Conclusions
XRCC2/FANCU is a FA gene, as is another RAD51 paralog gene, RAD51C/FANCO. Notably, similar to a subset of FA genes that act downstream of FANCD2, biallelic mutation of XRCC2/FANCU has not been associated with bone marrow failure. Taken together, our results yield important insights into phenotypes related to FA and its genetic origins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.