A B S T R A C TSolar thermal power cycles assisted multi-stage flash brine recycle (MSF-BR) distillation process are thermo-economically analyzed and evaluated. In this work, the analyses are compared according to three different configurations via two techniques of solar thermal power cycles. The first technique is considered for only desalination process; however, the second is considered for desalination and electric power generation via organic Rankine cycle. Solar parabolic trough concentrator (PTC) field is considered to dominate sufficient thermal power for MSF plant. Water steam working fluid is used for a direct vapor generation (DVG); however, Therminol-VP1 working substance is used for an indirect vapor generation (IDVG) through the PTC field. Moreover, the optimized configuration from the first technique is compared with the power generation and desalination (the second technique). The comparisons are proceeding for the MSF-BR desalination plant with total productivity in the range of 5,000m 3 /d which the gain ratio is increased up to 12 with 40 stages. The thermo-economic results reveal that first technique achieves remarkable results related to the PTC area, the SPC, kWh/m 3 , and the thermo-economic product cost, $/GJ.
This article proposes new methods of modeling and simulation of photovoltaic and horizontal wind turbine systems. The photovoltaic and horizontal wind turbines are modeled by the use of actual data sheets listed in the lookup table model. Moreover, artificial neural network numerical technique is used to simulate and evaluate the designed systems. The implemented work may help the designer and investor to elect a specified photovoltaic module and/or the horizontal wind turbine according to the demanded power load, thence predicting the operating conditions before the establishment process. The results show good matching with the actual data for the photovoltaic and horizontal wind turbine systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.