Assessment of soil suitability for sustainable intensive agriculture is an appropriate tool to select the land suitable for agricultural production with the least economic and environmental costs. This study was conducted to evaluate the agricultural soil quality in the northeast area of Tadla plain (Morocco) using geographic information system (GIS) and analytical hierarchy process (AHP). Six soil quality indicators, i.e., pH, organic carbon, cation exchange capacity, texture, salinity and slope were considered and performed in 60 subsurface soil samples. AHP method was utilized to identify the weight of each indicator from the pairwise comparison matrix. The weighted sum overlay analysis was then used to generate the soil quality map in a GIS environment, by overlaying both indicator weights and subindicator weights. The studied area was classified into four soil quality categories, i.e., poor, medium, good, and excellent, the percentage of each category is 1.12, 20.98, 61.07 and 16.83%, respectively. The results indicated that 1.12% of the study area has poor suitability for sustainable intensive agriculture due to their unsuitable texture and low salinity, while about 77% of cultivated soils are adapted to agricultural production. The above results could be useful for the management of agricultural activity.
Ensuring water availability for agriculture and drinking water supply in semi-arid mountainous regions requires control of factors influencing groundwater availability. In most cases, the population draws its water needs from the alluvial aquifers close to villages that are already limited and influenced by current climatic change. In addition, the establishment of deep wells in the hard rock aquifers depletes the aquifer. Hence, understanding the factors influencing water availability is an urgent requirement. The use of geographic information system (GIS), and remote sensing (RS), together with decision-making methods like analytical hierarchy process (AHP) will be of good aid in this regard. In the Tata basin, located in SE Morocco, ten factors were used to explain the groundwater potentiality map (GWPM). Five categories of potential zones were determined: very low (8.67%), low (17.74%), moderate (46.77%), high (19.95%), and very high (6.87%). The efficiency of the AHP model is validated using the ROC curve (receiver operating characteristics) which revealed a good correlation between the high potential groundwater zones and the spatial distribution of high flow wells. Geophysical prospecting, using electrical resistivity profiles, has made it possible to propose new well sites. It corresponds to conductive resistivity zones that coincide with the intersection of hydrogeological lineaments.
Water scarcity affects all continents, with approximately 1.2 billion people living in areas where water is physically lacking. This scarcity is more accentuated in countries with an arid climate, and its impact becomes more threatening when the economy depends mainly on it. The Kingdom of Morocco, with its agricultural vocation, is one of them, especially in its southern regions. Therefore, mapping areas with high groundwater potential based on available geospatial data allows for optimizing the choice of a future well in such areas. Geometric average and fractal models were used to assess and delineate potential groundwater areas in the Tissent basin, Southeast Morocco. Eight factors, including topography, geology, hydrology, and hydrogeology, influencing the distribution of water resources was used. The formation permeability factor presents the most significant impact among the others, although it is directly related to most of them. The areas located in the central and downstream part of the basin are characterized by a high water potentiality due to increased geological formations’ permeability near the drainage system, which constitutes a recharge zone, and a low slope allowing a prolonged water-formation contact time favoring a gradual infiltration of the water towards the deep aquifers. The groundwater potential map has been edited and validated by comparing it with data from 52 wells scattered throughout the basin. The favorable potential sectors cover 15.81% of the basin’s total area. The moderate ones account for 21.36% while the unfavorable areas cover 62.83%. These results aim to provide policymakers and managers with a guide map for groundwater research and reduce hydrogeological investigation costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.