This study is focused on developing an approach for spatial mapping of groundwater by considering four types of factors (geological, topographical, hydrological, and climatic factors), and by using different bivariate statistical models, such as frequency ratio (FR) and Shannon’s entropy (SE). The developed approach was applied in a fractured aquifer basin (Ameln Basin, Western Anti-Atlas, Morocco), to map the spatial variation of groundwater potential. Fifteen factors (15) influencing groundwater were considered in this study, including slope degree, slope aspect, elevation, topographic wetness index (TWI), slope length (LS), topographic position index (TPI), plane curvature, profile curvature, drainage density, lineament density, distance to rivers and fault network, normalized difference vegetation index (NDVI), lithology, and land surface temperature (LST). The potential maps produced were then classified into five classes to illustrate the spatial view of each potential class obtained. The predictive capacity of the frequency ratio and Shannon’s entropy models was determined using two different methods, the first one based on the use of flow data from 49 boreholes drilled in the study area, to test and statistically calibrate the predictive capacity of each model. The results show that the percentage of positive water points corresponds to the most productive areas (high water flow) (42.86% and 30.61% for the FR and SE models, respectively). On the other hand, the low water flows are consistent with the predicted unfavorable areas for hydrogeological prospecting (4.08% for the FR model and 6.12% for the SE model). Additionally, the second validation method involves the integration of 7200 Hz apparent resistivity data to identify conductive zones that are groundwater circulation zones. The interpretation of the geophysical results shows that the high-potential zones match with low apparent resistivity zones, and therefore promising targets for hydrogeological investigation. The FR and SE models have proved very efficient for hydrogeological mapping at a fractured basement area and suggest that the northern and southern part of the study area, specifically the two major fault zones (Ameln Valley in the north, and the Tighmi-Tifermit Valley in the south) has an adequate availability of groundwater, whereas the central part, covering the localities of Tarçouat, Boutabi, Tililan, and Ighalen, presents a scarcity of groundwater. The trend histogram of the evolution of positive water points according to each potentiality class obtained suggests that the FR model was more accurate than the SE model in predicting the potential groundwater areas. The results suggest that the proposed approach is very important for hydrogeological mapping of fractured aquifers, and the resulting maps can be helpful to managers and planners to generate groundwater development plans and attenuate the consequences of future drought.
Ensuring water availability for agriculture and drinking water supply in semi-arid mountainous regions requires control of factors influencing groundwater availability. In most cases, the population draws its water needs from the alluvial aquifers close to villages that are already limited and influenced by current climatic change. In addition, the establishment of deep wells in the hard rock aquifers depletes the aquifer. Hence, understanding the factors influencing water availability is an urgent requirement. The use of geographic information system (GIS), and remote sensing (RS), together with decision-making methods like analytical hierarchy process (AHP) will be of good aid in this regard. In the Tata basin, located in SE Morocco, ten factors were used to explain the groundwater potentiality map (GWPM). Five categories of potential zones were determined: very low (8.67%), low (17.74%), moderate (46.77%), high (19.95%), and very high (6.87%). The efficiency of the AHP model is validated using the ROC curve (receiver operating characteristics) which revealed a good correlation between the high potential groundwater zones and the spatial distribution of high flow wells. Geophysical prospecting, using electrical resistivity profiles, has made it possible to propose new well sites. It corresponds to conductive resistivity zones that coincide with the intersection of hydrogeological lineaments.
Water scarcity affects all continents, with approximately 1.2 billion people living in areas where water is physically lacking. This scarcity is more accentuated in countries with an arid climate, and its impact becomes more threatening when the economy depends mainly on it. The Kingdom of Morocco, with its agricultural vocation, is one of them, especially in its southern regions. Therefore, mapping areas with high groundwater potential based on available geospatial data allows for optimizing the choice of a future well in such areas. Geometric average and fractal models were used to assess and delineate potential groundwater areas in the Tissent basin, Southeast Morocco. Eight factors, including topography, geology, hydrology, and hydrogeology, influencing the distribution of water resources was used. The formation permeability factor presents the most significant impact among the others, although it is directly related to most of them. The areas located in the central and downstream part of the basin are characterized by a high water potentiality due to increased geological formations’ permeability near the drainage system, which constitutes a recharge zone, and a low slope allowing a prolonged water-formation contact time favoring a gradual infiltration of the water towards the deep aquifers. The groundwater potential map has been edited and validated by comparing it with data from 52 wells scattered throughout the basin. The favorable potential sectors cover 15.81% of the basin’s total area. The moderate ones account for 21.36% while the unfavorable areas cover 62.83%. These results aim to provide policymakers and managers with a guide map for groundwater research and reduce hydrogeological investigation costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.