Background Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of all cases of heart failure and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. Methods and Results We compared mouse models expressing phosphorylation deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and WT-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide (BNP) levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of heart failure. Echocardiography (ejection fraction, myocardial relaxation velocity) and pressure/volume measurements (−dP/dtmin, pressure decay time constant Tau-Glantz, passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice while deficient cMyBP-C phosphorylation causes diastolic dysfunction with preserved ejection fraction in cMyBP-C(t3SA) mice. Simultaneous force and [Ca2+]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not due to altered [Ca2+]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. Conclusions cMyBP-C phosphorylation enhances relaxation while deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a regulator of pump function in healthy hearts. However, the mechanisms of regulation by cAMP-dependent protein kinase (PKA)-mediated cMyBP-C phosphorylation have not been completely dissociated from other myofilament substrates for PKA, especially cardiac troponin I (cTnI). We have used synchrotron X-ray diffraction in skinned trabeculae to elucidate the roles of cMyBP-C and cTnI phosphorylation in myocardial inotropy and lusitropy. Myocardium in this study was isolated from four transgenic mouse lines in which the phosphorylation state of either cMyBP-C or cTnI was constitutively altered by site-specific mutagenesis. Analysis of peak intensities in X-ray diffraction patterns from trabeculae showed that cross-bridges are displaced similarly from the thick filament and toward actin (1) when both cMyBP-C and cTnI are phosphorylated, (2) when only cMyBP-C is phosphorylated, and (3) when cMyBP-C phosphorylation is mimicked by replacement with negative charge in its PKA sites. These findings suggest that phosphorylation of cMyBP-C relieves a constraint on cross-bridges, thereby increasing the proximity of myosin to binding sites on actin. Measurements of Ca2+-activated force in myocardium defined distinct molecular effects due to phosphorylation of cMyBP-C or co-phosphorylation with cTnI. Echocardiography revealed that mimicking the charge of cMyBP-C phosphorylation protects hearts from hypertrophy and systolic dysfunction that develops with constitutive dephosphorylation or genetic ablation, underscoring the importance of cMyBP-C phosphorylation for proper pump function.
Rationale Subtypes of 50-kHz ultrasonic vocalizations (USVs) in rats are thought to reflect positive affect and occur with cocaine or amphetamine delivery. In contexts predicting forthcoming cocaine, pre-drug anticipatory USVs are initially minimal during daily sessions but gradually escalate over several weeks, presumably as the animal learns to expect and look forward to impending drug access. To gain more insight into motivational aspects of cocaine intake in animal models of drug dependence studies, it is important to compare experience-dependent changes in lever response rate, USVs and locomotion during cocaine conditioning and extinction trials. Objective To address whether cocaine-induced increases in lever responding and locomotor activity correspond with USV production. The study also determined whether short-term cocaine and context deprivation effects could be detected during conditioning or extinction. Methods Rats underwent 20 days of 60-min sessions of self- or yoked administration of cocaine (0.75 mg/kg/infusion, i.v.), followed by 19 days of extinction training (8 weeks total, weekends off). Results Lever responding for cocaine and cocaine-induced locomotor activity increased across conditioning sessions. In contrast, the number of frequency modulated (FM) 50-kHz USVs evoked in response to cocaine infusion decreased with cocaine experience, suggesting perhaps tolerance to the rewarding properties of the drug. In addition, USVs but not lever pressing or locomotion are affected after brief periods of drug and/or drug context abstinence. Conclusions Except for initial drug exposure, increased cocaine seeking during cocaine delivery could reflect either enhanced drug motivation or the development of drug tolerance, but not enhanced positive affect.
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.