Differential-algebraic equations (DAEs) arise naturally as a result of equation-based object-oriented modeling. In many cases, these models contain unknown parameters that have to be estimated using experimental data. However, often the system is subject to unknown disturbances which, if not taken into account in the estimation, can severely affect the model's accuracy. For non-linear state-space models, particle filter methods have been developed to tackle this issue. Unfortunately, applying such methods to non-linear DAEs requires a transformation into a state-space form, which is particularly difficult to obtain for models with process disturbances. In this paper, we propose a simulation-based prediction error method that can be used for non-linear DAEs where disturbances are modeled as continuous-time stochastic processes. To the authors' best knowledge, there are no general methods successfully dealing with parameter estimation for this type of model. One of the challenges in particle filtering methods are random variations in the minimized cost function due to the nature of the algorithm. In our approach, a similar phenomenon occurs and we explicitly consider how to sample the underlying continuous process to mitigate this problem. The method is illustrated numerically on a pendulum example. The results suggest that the method is able to deliver consistent estimates.
This paper considers the class of deterministic continuous-time optimal control problems (OCPs) with piecewise-affine (PWA) vector field, polynomial Lagrangian and semialgebraic input and state constraints. The OCP is first relaxed as an infinite-dimensional linear program (LP) over a space of occupation measures. This LP, a particular instance of the generalized moment problem, is then approached by an asymptotically converging hierarchy of linear matrix inequality (LMI) relaxations. The relaxed dual of the original LP returns a polynomial approximation of the value function that solves the Hamilton-Jacobi-Bellman (HJB) equation of the OCP. Based on this polynomial approximation, a suboptimal policy is developed to construct a state feedback in a sample-and-hold manner. The results show that the suboptimal policy succeeds in providing a stabilizing suboptimal state feedback law that drives the system relatively close to the optimal trajectories and respects the given constraints.
In system identification, the maximum-likelihood method is typically used for parameter estimation owing to a number of optimal statistical properties. However, in many cases, the likelihood function is nonconvex. The solutions are usually obtained by local numerical optimization algorithms that require good initialization and cannot guarantee global optimality. This paper proposes a computationally tractable method that computes the maximum-likelihood parameter estimates with posterior certification of global optimality via the concept of sum-of-squares polynomials and sparse semidefinite relaxations. It is shown that the method can be applied to certain classes of discrete-time linear models. This is achieved by taking advantage of the rational structure of these models and the sparsity in the maximum-likelihood parameter estimation problem. The method is illustrated on a simulation model of a resonant mechanical system where standard methods struggle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.