The purposed training program with NMES vs VOL contractions induced strength gains but did not permit any improvement of contralateral monopedal postural control in healthy young subjects. This has potential for therapeutic application and allows clinicians to focus their training programs on dynamic and poly-articular exercises to improve the postural control in young subjects.
Background
The vibration-induced postural reaction paradigm (VIB-PR) offers a unique way for investigating sensorimotor control mechanisms. Measures of VIB-PR are usually calculated from the whole VIB period, yet recent evidence proposed that distinctive mechanisms are likely at play between the early vs. later phases of the postural reaction.
Objectives
The present work verified if spatiotemporal analyses of center of pressure (COP) displacements can detect differences between these early/later phases of VIB-PR. Also, we further characterized the intra/inter-individual variability of COP measurements, since the underlying variability of VIB-PR remains largely unexplored.
Methods
Twenty young volunteers realized two experimental conditions of bipodal stance with eyes closed: (i) bilateral VIB of tibialis anterior (TIB) and (ii) Achilles’ (ACH) tendons. Each condition consisted of five trials and lasted 30 s as follows: 10 s baseline, 10 s VIB and 10 s post-VIB. Linear COP variables (antero-posterior (AP) amplitude & velocity) were computed for both VIB and post-VIB periods using the following time-windows: early 2 s, the later 8 s and the whole 10 s duration. Intra- and inter-individual variability were respectively estimated using the standard error of the measurement and the coefficient of variation. Both variability metrics were obtained using five vs. the first three trials.
Results
Significant contrasts were found between time-windows for both VIB and post-VIB periods. COP variables were generally higher during the early 2 s phase compared to the later 8 s phase for both TIB [mean difference between 8 s– 2 s phases: Amplitude AP = -1.11 ± 1.14 cm during VIB and -2.99 ± 1.31 during post-VIB; Velocity AP = -1.17 ± 0.86 cm/s during VIB and -3.13 ± 1.31 cm/s during post-VIB] and ACH tendons [Amplitude AP = -0.37 ± 0.98 cm during VIB and -3.41 ± 1.20 during post-VIB; Velocity AP = -0.31 ± 0.59 cm/s during VIB and -3.89 ± 1.52 cm/s during post-VIB]. Most within- and between-subject variability scores were below 30% and using three instead of five trials had no impact on variability. VIB-PR patterns were quite similar within a same person, but variable behaviors were observed between individuals during the later phase.
Conclusion
Our study highlights the relevance of identifying and separately analyzing distinct phases within VIB-PR patterns, as well as characterizing how these patterns vary at the individual level.
Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res 32(10): 2725-2729, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p < 0.05), whereas COPAP decreased after 10-minute and 15-minute recovery periods (p < 0.001; p < 0.01, respectively) for the D-Leg, and after a 10-minute recovery period for the ND-Leg (p < 0.001). The warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.