Recent advancements in the Internet of Health Things (IoHT) have ushered in the wide adoption of IoT devices in our daily health management. For IoHT data to be acceptable by stakeholders, applications that incorporate the IoHT must have a provision for data provenance, in addition to the accuracy, security, integrity, and quality of data. To protect the privacy and security of IoHT data, federated learning (FL) and differential privacy (DP) have been proposed, where private IoHT data can be trained at the owner’s premises. Recent advancements in hardware GPUs even allow the FL process within smartphone or edge devices having the IoHT attached to their edge nodes. Although some of the privacy concerns of IoHT data are addressed by FL, fully decentralized FL is still a challenge due to the lack of training capability at all federated nodes, the scarcity of high-quality training datasets, the provenance of training data, and the authentication required for each FL node. In this paper, we present a lightweight hybrid FL framework in which blockchain smart contracts manage the edge training plan, trust management, and authentication of participating federated nodes, the distribution of global or locally trained models, the reputation of edge nodes and their uploaded datasets or models. The framework also supports the full encryption of a dataset, the model training, and the inferencing process. Each federated edge node performs additive encryption, while the blockchain uses multiplicative encryption to aggregate the updated model parameters. To support the full privacy and anonymization of the IoHT data, the framework supports lightweight DP. This framework was tested with several deep learning applications designed for clinical trials with COVID-19 patients. We present here the detailed design, implementation, and test results, which demonstrate strong potential for wider adoption of IoHT-based health management in a secure way.
We propose a cognitive healthcare framework that adopts the Internet of Things (IoT)-cloud technologies. This framework uses smart sensors for communications and deep learning for intelligent decision-making within the smart city perspective. The cognitive and smart framework monitors patients' state in real time and provides accurate, timely, and high-quality healthcare services at low cost. To assess the feasibility of the proposed framework, we present the experimental results of an EEG pathology classification technique that uses deep learning. We employ a range of healthcare smart sensors, including an EEG smart sensor, to record and monitor multimodal healthcare data continuously. The EEG signals from patients are transmitted via smart IoT devices to the cloud, where they are processed and sent to a cognitive module. The system determines the state of the patient by monitoring sensor readings, such as facial expressions, speech, EEG, movements, and gestures. The real-time decision, based on which the future course of action is taken, is made by the cognitive module. When information is transmitted to the deep learning module, the EEG signals are classified as pathologic or normal. The patient state monitoring and the EEG processing results are shared with healthcare providers, who can then assess the patient's condition and provide emergency help if the patient is in a critical state. The proposed deep learning model achieves better accuracy than the state-of-the-art systems. INDEX TERMS Cognitive, IoT-cloud, deep learning, smart healthcare, EEG.
A shortest-path algorithm finds a path containing the minimal cost between two vertices in a graph. A plethora of shortest-path algorithms is studied in the literature that span across multiple disciplines. This paper presents a survey of shortest-path algorithms based on a taxonomy that is introduced in the paper. One dimension of this taxonomy is the various flavors of the shortest-path problem. There is no one general algorithm that is capable of solving all variants of the shortest-path problem due to the space and time complexities associated with each algorithm. Other important dimensions of the taxonomy include whether the shortest-path algorithm operates over a static or a dynamic graph, whether the shortest-path algorithm produces exact or approximate answers, and whether the objective of the shortest-path algorithm is to achieve time-dependence or is to only be goal directed. This survey studies and classifies shortest-path algorithms according to the proposed taxonomy. The survey also presents the challenges and proposed solutions associated with each category in the taxonomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.