ObjectiveTo assess whether reshaping of the immune balance by infusion of autologous natural regulatory T cells (nTregs) in patients after kidney transplantation is safe, feasible, and enables the tapering of lifelong high dose immunosuppression, with its limited efficacy, adverse effects, and high direct and indirect costs, along with addressing several key challenges of nTreg treatment, such as easy and robust manufacturing, danger of over immunosuppression, interaction with standard care drugs, and functional stability in an inflammatory environment in a useful proof-of-concept disease model.DesignInvestigator initiated, monocentre, nTreg dose escalation, phase I/IIa clinical trial (ONEnTreg13).SettingCharité-University Hospital, Berlin, Germany, within the ONE study consortium (funded by the European Union).ParticipantsRecipients of living donor kidney transplant (ONEnTreg13, n=11) and corresponding reference group trial (ONErgt11-CHA, n=9).InterventionsCD4+ CD25+ FoxP3+ nTreg products were given seven days after kidney transplantation as one intravenous dose of 0.5, 1.0, or 2.5-3.0×106 cells/kg body weight, with subsequent stepwise tapering of triple immunosuppression to low dose tacrolimus monotherapy until week 48.Main outcome measuresThe primary clinical and safety endpoints were assessed by a composite endpoint at week 60 with further three year follow-up. The assessment included incidence of biopsy confirmed acute rejection, assessment of nTreg infusion related adverse effects, and signs of over immunosuppression. Secondary endpoints addressed allograft functions. Accompanying research included a comprehensive exploratory biomarker portfolio.ResultsFor all patients, nTreg products with sufficient yield, purity, and functionality could be generated from 40-50 mL of peripheral blood taken two weeks before kidney transplantation. None of the three nTreg dose escalation groups had dose limiting toxicity. The nTreg and reference groups had 100% three year allograft survival and similar clinical and safety profiles. Stable monotherapy immunosuppression was achieved in eight of 11 (73%) patients receiving nTregs, while the reference group remained on standard dual or triple drug immunosuppression (P=0.002). Mechanistically, the activation of conventional T cells was reduced and nTregs shifted in vivo from a polyclonal to an oligoclonal T cell receptor repertoire.ConclusionsThe application of autologous nTregs was safe and feasible even in patients who had a kidney transplant and were immunosuppressed. These results warrant further evaluation of Treg efficacy and serve as the basis for the development of next generation nTreg approaches in transplantation and any immunopathologies.Trial registrationNCT02371434 (ONEnTreg13) and EudraCT:2011-004301-24 (ONErgt11).
Chimeric antigen receptors (CAR) are fusion proteins that redirect T cell specificity towards surface molecules expressed on tumour cells independently of the conventional T cell receptor (TCR)-major histocompatibility complex (MHC) interactions. CARs are introduced into T cells through gene transfer 1,2 . The antigen-recognition domain most often consists of a mouse-derived monoclonal antibody as a continuous peptide single-chain variable fragment (scFv) steered through an extracellular spacer domain that provides flexibility. ScFvs engage with their target epitopes and confer activation signals through modular intracellular signalling domains. Currently, CAR T cells are generated ex vivo from peripheral blood-derived T cells, which are typically transduced with replication-deficient vectors that integrate the CAR expression cassette into the T cell genome. These CAR T cells are subsequently expanded to large numbers in culture. After infusion into patients, these cells can recognize and eliminate tumour cells expressing the target antigen.
While advanced therapy medicinal products offer great clinical promise, most EU-approved products have not achieved satisfactory commercial performance. Here we highlight a number of issues that prevent current products from obtaining commercial success and pitfalls that developers must overcome in future product development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.