Fused deposition modeling (FDM) is one of the most used additive manufacturing processes in the current time. Predicting the impact of different 3D printing parameters on the quality of printed parts is one of the critical challenges facing researchers. The present paper aims to examine the effect of three FDM process parameters, namely deposition velocity, extrusion temperature, and raster orientation on the bending strength, stiffness, and deflection at break of polylactic acid (PLA) parts using Taguchi design of experiment technique. The results indicate that the temperature has the highest impact on the mechanical properties of PLA specimens followed by the velocity and the orientation. The optimum composition offering the best mechanical behavior was determined. The optimal predicted response was 159.78 N, 39.92 N/mm, and 12.55 mm for the bending strength, bending stiffness, and deflection at break, respectively. The R2 obtained from analysis of variance (ANOVA) showed good agreement between the experimental results and those predicted using a regression model.
Wood-polymer composites are increasingly produced through fused deposition modeling (FDM)—an additive manufacturing technique. The versatility of this technology has attracted several industries to print complex shapes and structures. This underscores the importance of studying the mechanical properties of the FDM parts, specifically, their elastic properties. A numerical homogenization methodology is introduced in the present study, focusing on the fundamental aspect of the elastic properties. Investigations were carried out on the influence of various parameters like wood volume fraction, aspect ratio, and internal porosity. The numerical results were validated using analytical models and experimental data. The comparison showed a satisfactory agreement with experimental data, where the relative error did not exceed 10%, leading to a strong conclusion about the validity and effectiveness of the proposed approach.
The 3D printing technology allows to overcome the lack of medical equipment during the Covid19 pandemic around the world. The PLA is widely used to produce medical devices and personal protective equipment. The aim of this paper is to determine the mechanical behavior of PLA-parts fabricated using Open-Source 3D printer based on FDM process. The mechanical behavior is characterized by two proprieties which are flexural strength and flexural modulus of elasticity. The mechanical properties are determined from the experimental results of three-point bending test according to the following process parameters: printing speed, deposition angle and extruder temperature. The results obtained show that the mechanical properties depend on the three process parameters. The response surface method and the variance analysis technique were used to establish an empirical model between process parameters and mechanical properties. The optimal printing parameters were determined using the desirability function. The Finite Element Analysis for Flexural Strength was performed to validate the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.