We have shown that pMSCs can transition macrophages from an inflammatory M1 into an anti-inflammatory M2 phenotype. Our findings suggest a new immunosuppressive property of pMSCs that may be employed in the resolution of inflammation associated with inflammatory diseases and in tissue repair.
Mesenchymal stem cells (MSC) can be isolated from different adult tissues including bone marrow, adipose tissue, cord blood and placenta. MSCs modulate the immune function of the major immune cell populations involved in alloantigen recognition and elimination, including antigen presenting cells, T cells, B cells and natural killer cells. Many clinical trials are currently underway that employ MSCs to treat human immunological diseases. However, the molecular mechanism that mediates the immunosuppressive effect of MSCs is still unclear and the safety of using MSC in patient needs further confirmation. Here, we review the cytokines that activate MSCs and the soluble factors produced by MSCs, which allow them to exert their immunosuppressive effects. We review the mechanism responsible, at least in part, for the immune suppressive effects of MSCs and highlight areas of research required for a better understanding of MSC immune modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.