Buffer gas cooling of molecules to cold and ultracold temperatures is a promising technique for realizing a host of scientific and technological opportunities. Unfortunately, experiments using cryogenic buffer gases have found that although the molecular motion and rotation are quickly cooled, the molecular vibration relaxes at impractically long timescales. Here, we theoretically explain the recently observed exception to this rule: efficient vibrational cooling of BaCl+ by a laser-cooled Ca buffer gas. We perform intense close-coupling calculations that agree with the experimental result, and use both quantum defect theory and a statistical capture model to provide an intuitive understanding of the system. This result establishes that, in contrast to the commonly held opinion, there exists a large class of systems that exhibit efficient vibrational cooling and therefore supports a new route to realize the long-sought opportunities offered by molecular structure.
We mapped the global three-dimensional potential energy surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH(+)(X(3)Σ(-)), the O + H2(+)(X(2)Σg(+)), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O(+)(X(2)B1) and of the diatomic fragments, the vibronic spectrum, the dissociation energy, and the barrier to linearity for H2O(+)(X(2)B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic potentials. In whole, a good agreement is found, which validates our 3D-PES.
A ro-vibrationally inelastic close coupling study of the rotational excitation of OH(+)(X(3)Σ(-)) by collisions with H((2)S) is presented. The two lowest potential energy surfaces of doublet and quadruplet spin multiplicity are involved. The former is the one we developed recently, and the latter is a modified version of the quadruplet surface of Martinez et al. to include the long-range charge-induced-dipole potential. The details of the modification of this surface are presented as well as the comparison of the rotational excitation resulting from collisions with hydrogen on these two surfaces. The effect of the coupling between vibration and rotation on the rotational excitation rate is also discussed, as the potential well depth of the doublet surface is quite large and allows the coupling between many vibrational channels of OH(+). As the hydrogen exchange reaction can occur for both potential energy surfaces, we discuss the reliability of the approximation made by the calculation of the cross sections with a quantum dynamics limited to the inelastic process. The relative importance of the collisions on the doublet or quadruplet surface within a given rotational transition is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.