In this paper, we present a novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) data and estimation of intensity inhomogeneities using fuzzy logic. MRI intensity inhomogeneities can be attributed to imperfections in the radio-frequency coils or to problems associated with the acquisition sequences. The result is a slowly varying shading artifact over the image that can produce errors with conventional intensity-based classification. Our algorithm is formulated by modifying the objective function of the standard fuzzy c-means (FCM) algorithm to compensate for such inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced by the labels in its immediate neighborhood. The neighborhood effect acts as a regularizer and biases the solution toward piecewise-homogeneous labelings. Such a regularization is useful in segmenting scans corrupted by salt and pepper noise. Experimental results on both synthetic images and MR data are given to demonstrate the effectiveness and efficiency of the proposed algorithm.
This paper addresses the problem of calibrating camera lens distortion, which can be significant in medium to wide angle lenses. Our approach is based on the analysis of distorted images of straight lines. We derive new distortion measures that can be optimized using nonlinear search techniques to find the best distortion parameters that straighten these lines. Unlike the other existing approaches, we also provide fast, closed-form solutions to the distortion coefficients. We prove that including both the distortion center and the decentering coefficients in the nonlinear optimization step may lead to instability of the estimation algorithm. Our approach provides a way to get around this, and, at the same time, it reduces the search space of the calibration problem without sacrificing the accuracy and produces more stable and noise-robust results. In addition, while almost all existing nonmetric distortion calibration methods needs user involvement in one form or another, we present a robust approach to distortion calibration based on the least-median-of-squares estimator. Our approach is, thus, able to proceed in a fully automatic manner while being less sensitive to erroneous input data such as image curves that are mistakenly considered projections of three-dimensional linear segments. Experiments to evaluate the performance of this approach on synthetic and real data are reported.
Welcome to the era of cognitive health care, a new partnership between human beings and technology with the goal of transforming health care on a global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.