Background. Currently, mutations in rpoB, KatG, and rrs genes and inhA promoter were considered to be involved in conferring resistance to rifampicin, isoniazid, and streptomycin in Mycobacterium tuberculosis (MTB). Objective. The aims of this study were to detect the prevalence of first-line tuberculosis (TB) drug resistance among a group of previously treated and newly detected TB patients, to determine the association between prevalence of multidrug resistance (MDR) and demographic information (age and sex), to explain genes correlated with MDR Mycobacterium tuberculosis, and to characterize MTB via 16S ribosomal RNA (16S rRNA) analysis. Methods. A hundred MTB isolates from Sudanese pulmonary TB patients were included in the study. The proportional method of drug susceptibility test was carried out on Löwenstein-Jensen media. Multiplex PCR of rpoB and KatG genes and inhA promoter was conducted; then rrs genes were amplified by conventional PCR and were sequenced. The sequences of the PCR product were compared with known rrs gene sequences in the GenBank database by multiple sequence alignment tools. Result. The prevalence of MDR was 14.7% among old cases and 5.3% among newly diagnosed cases. Conclusion. Mutations in rrs could be considered as a diagnostic marker.
Sudan Ebola virus is single stranded negative sense RNA genome belonging to Filovirus Filoviridae family that causes hemorrhagic fever. There is no treatment or vaccine for it, thus the aim of this study is to design a peptide vaccine using immuoinformatics approaches to analyse the glycoprotein of the all strain of SUDV, to determine the conserved region which is further studied to predict all possible epitopes that can be used as a peptide vaccine. A total of 21 Sudan Ebola virus glycoprotein retrieved from NCBI database were aligned to determine the conservancy and to predict the epitopes using IEDB analysis resource. Three epitopes predicted as a peptide vaccine for B cell (PPPPDGVR, ETFLQSPP, LQSPPIRE). For T cell four epitopes showed high affinity to MHC class I (FLYDRLAST, IIIAIIALL, MHNQNALVC and RTYTILNRK) and high coverage against Sudan and the whole world population. Also in MHC class II, Four epitopes that interact with most frequent MHC class II alleles (FAEGVIAFL, FLRATTELR, FLYDRLAST and FVWVIILFQ) with high coverage against Sudan and the whole world population. We recommend in vivo and in vitro study to prove the effectiveness of these predicted epitopes as a peptide vaccine.
Merkel cell Polyomavirus is non-enveloped, dsDNA virus belonging to Polyomaviridae family linked to an uncommon aggressive skin malignancy. The poor prognosis and limited understanding of disease pathogenesis warrants innovative treatment. In this current study we aim to predict TB cell immunogenic epitopes from the VP1 protein of all merkel cell polyomavirus strain which will aid in effective epitope based vaccine design using immuoinformatics approaches. We retrieved 423 full-length VP1 protein sequences of merkel cell polyomavirus species from the NCBI database. These sequences were analyzed to determine the conserved region and were used to predict the epitopes using the IEDB immunoinformatics algorithms. For B cell three epitope were predicted as peptide vaccine (QEKTVY, KTVYPK, and QEKTVYP). For T cell the predicted Class-I peptides (SLFSNLMPK, LQMWEAISV and LLVKGGVEV) were found to cover the maximum number of MHC I alleles. The highest scoring Class II MHC binding peptides were (IELYLNPRM, ISSLINVHY and INSLFSNLM). Further experiments will need to be undertaken to confirm the potential of these predicted epitopes in a future efficacious vaccine development.
Aim: As a strategy to improve the outcome of ex vivo cultivated corneal epithelial transplantation, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is investigated in promoting corneal epithelial growth and functions. Materials & methods: Human telomerase-immortalized corneal epithelial cells were characterized and its functions evaluated by scratch migration assay, cellular senescence, HLA expression and spheres formation with hUC-MSC. Results: Expression of corneal epithelial markers was influenced by the duration and method of co-culture. Indirect co-culture improved cellular migration and delayed senescence when treated after 3 and 5 days. hUC-MSC downregulated expression of HLA Class I and II in IFN-γ-stimulated human telomerase-immortalized corneal epithelial cells. Conclusion: hUC-MSC promote corneal epithelial growth and functions after treatment with hUC-MSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.