This work presents a performance comparison between a Predictive Functional Control (PFC) and a traditional Proportional Integral Derivative (PID) controller specifically for a cruise control application. The tuning efficacy, constraints handling, and disturbance rejection features of both controllers are analysed by comparing their closed-loop response. A simplified nonlinear vehicle longitudinal dynamics model is derived and utilised as a plant to simulate the control response from a real car. For a fair comparison, both PFC and PID are tuned to achieve the similar desired closed-loop time response. Qualitatively, the results show that PFC provides a better closed-loop response, constraints handling, and disturbance rejection compared to PID. Besides, it is also found that the tuning approach of PFC is more intuitive and practical in nature which can be very handy for the future development of an autonomous cruise control application.
This paper presents the performance analysis of Predictive Functional Control (PFC) for Adaptive Cruise Control (ACC) application. To cope with multiple driving objectives of modern ACC systems such as passenger comfort, safe distancing, and fast time response, an advanced optimal controller such as Model Predictive Control (MPC) is often used. Nevertheless, MPC requires a high computation load due to its complex formulation and may overload the processing power of a microcontroller. Thus, the prime objective of this work is to propose a PFC algorithm as an alternative controller, while providing a formal comparison between MPC and the traditional Proportional Integral (PI) controller. A standard kinematic model for vehicle longitudinal dynamics was modelled and used to derive the control law of PFC. Since the open-loop dynamic of the derived transfer function is not stable, the second objective is to propose a pre-stabilized loop or cascade PFC structure for the system. A complete tuning procedure and analysis were presented. The simulation result shows that although MPC performance is the best for the ACC application with Root Mean Square Error (RMSE) of 1.4873, PFC has shown a promising response with RMSE of 1.5501, which is better compared to the PI controller with RMSE of 1.6219. All the imposed driving constraints such as maximum acceleration, maximum deceleration and safe distance were satisfied in the car following application. Thus, the findings from this work can become a good initial motivation to further explore the capability of the PFC algorithm for future ACC development. ABSTRAK: Kajian ini adalah berkenaan analisis prestasi Kawalan Fungsi Ramalan (PFC) aplikasi Kawalan Mudah Suai (ACC). Bagi memenuhi pelbagai keperluan objektif sistem pemanduan moden ACC seperti keselesaan penumpang, penjarakan selamat dan tindak balas pantas, kawalan optimum terbaru seperti Model Kawalan Ramalan (MPC) sering digunakan. Walau bagaimanapun, MPC memerlukan beban pengiraan tinggi kerana rumusnya yang kompleks dan mungkin mengakibatkan beban berlebihan kuasa pemprosesan mikrokawalan. Oleh itu, matlamat utama kajian ini adalah bagi mencadangkan algoritma PFC yang mempunyai pengiraan mudah sebagai kawalan alternatif, sementara menyediakan perbandingan formal antara MPC dan kawalan tradisional Berkadar Keseluruhan (PI). Oleh kerana model ini tidak stabil, objektif kedua adalah mencadangkan penggunaan struktur PFC berlapis bagi menstabilkan sistem terlebih dahulu sebelum algorithma kawalan digunakan atau dengan menggunakan struktur PFC secara berturut pada sistem. Prosedur lengkap dan terperinci untuk analisis PFC dibentangkan. Dapatan simulasi kajian menunjukkan walaupun prestasi MPC adalah baik bagi aplikasi ACC dengan Ralat Punca Min Kuasa Dua (RMSE) bernilai 1.4873, namun PFC menunjukkan tindak balas baik dengan RMSE bernilai 1.5501 berbanding kawalan PI yang mempunyai RMSE sebanyak 1.6219. Kesemua kekangan seperti pecutan dan nyahpecutan maksima, dan penjarakan selamat bertepatan dengan aplikasi kenderaan ini. Dengan itu, penemuan ini adalah motivasi awal yang baik bagi meneroka lebih jauh keupayaan algoritma PFC bagi membangun ACC pada masa hadapan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.