Vision-based motion estimation is an effective means for mobile robot localization and is often used in conjunction with other sensors for navigation and path planning. This paper presents a low-overhead real-time ego-motion estimation (visual odometry) system based on either a stereo or RGB-D sensor. The algorithm’s accuracy outperforms typical frame-to-frame approaches by maintaining a limited local map, while requiring significantly less memory and computational power in contrast to using global maps common in full visual SLAM methods. The algorithm is evaluated on common publicly available datasets that span different use-cases and performance is compared to other comparable open-source systems in terms of accuracy, frame rate and memory requirements. This paper accompanies the release of the source code as a modular software package for the robotics community compatible with the Robot Operating System (ROS).
Cameras are valuable sensors for robotics perception tasks. Among these perception tasks are motion estimation, localization, and object detection. Cameras are attractive sensors because they are passive and relatively cheap and can provide rich information. However, being passive sensors, they rely on external illumination from the environment which means that their performance degrades in low-light conditions. In this paper, we present and investigate four methods to enhance images under challenging night conditions. The findings are relevant to a wide range of feature-based vision systems, such as tracking for augmented reality, image registration, localization, and mapping, as well as deep learning-based object detectors. As autonomous mobile robots are expected to operate under low-illumination conditions at night, evaluation is based on state-of-the-art systems for motion estimation, localization, and object detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.