Developing new ways to estimate probabilities can be valuable for science, statistics, and engineering. By considering the information content of different output patterns, recent work invoking algorithmic information theory has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps. These algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound has little predictive value. Here we study this low complexity, low probability phenomenon by looking at example maps, namely a finite state transducer, natural time series data, RNA molecule structures, and polynomial curves. Some mechanisms causing low complexity, low probability behaviour are identified, and we argue this behaviour should be assumed as a default in the real world algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some implications of low complexity, low probability patterns for several research areas including simplicity in physics and biology, a priori probability predictions, Solomonoff induction and Occam's razor, machine learning, and password guessing.
Developing new ways to estimate probabilities can be valuable for science, statistics, and engineering. By considering the information content of different output patterns, recent work invoking algorithmic information theory has shown that a priori probability predictions based on pattern complexities can be made in a broad class of input-output maps. These algorithmic probability predictions do not depend on a detailed knowledge of how output patterns were produced, or historical statistical data. Although quantitatively fairly accurate, a main weakness of these predictions is that they are given as an upper bound on the probability of a pattern, but many low complexity, low probability patterns occur, for which the upper bound has little predictive value. Here we study this low complexity, low probability phenomenon by looking at example maps, namely a finite state transducer, natural time series data, RNA molecule structures, and polynomial curves. Some mechanisms causing low complexity, low probability behaviour are identified, and we argue this behaviour should be assumed as a default in the real world algorithmic probability studies. Additionally, we examine some applications of algorithmic probability and discuss some implications of low complexity, low probability patterns for several research areas including simplicity in physics and biology, a priori probability predictions, Solomonoff induction and Occam's razor, machine learning, and password guessing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.