Ontologies, as semantic knowledge representation, have a crucial role in various information systems. The main pitfall of manually building ontologies is effort and time-consuming. Ontology learning is a key solution. Learning Non-Taxonomic Relationships of Ontologies (LNTRO) is the process of automatic/semi-automatic extraction of all possible relationships between concepts in a specific domain, except the hierarchal relations. Most of the research works focused on the extraction of concepts and taxonomic relations in the ontology learning process. This article presents the results of a systematic review of the state-of-the-art approaches for LNTRO. Sixteen approaches have been described and qualitatively analyzed. The solutions they provide are discussed along with their respective positive and negative aspects. The goal is to provide researchers in this area a comprehensive understanding of the drawbacks of the existing work, thereby encouraging further improvement of the research work in this area. Furthermore, this article proposes a set of recommendations for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.