Background: We have previously shown that nasal pressure support ventilation (nPSV) can lead to an active inspiratory laryngeal narrowing in lambs. This, in turn, can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. On the other hand, nasal high-frequency oscillatory ventilation (nHFOV) is particularly attractive in newborns, especially since, unlike nPSV, it does not require synchronization with the patient's inspiratory efforts. Objectives: The main aim of the present study was to test the hypothesis that glottal constrictor muscle activity (EMG) does not develop during nHFOV. A secondary objective was to study laryngeal EMG during nHFOV-induced central apneas. Methods: Polysomnographic recordings were performed in 7 nonsedated lambs which were ventilated with increasing levels of nPSV and nHFOV at both 4 and 8 Hz, in random order. States of alertness, diaphragm and glottal muscle EMG, SpO2, and respiratory movements were continuously recorded. Results: While phasic inspiratory glottal constrictor EMG appeared with increasing nPSV levels in 6 out of 7 lambs, it was never observed with nHFOV. In addition, nHFOV at 4 Hz dramatically inhibited central respiratory drive in 4/7 lambs, with 64-100% of recording time spent in central apnea in 3 lambs. No glottal constrictor EMG was observed during these central apneas. Conclusion: nHFOV does not induce glottal constrictor muscle EMG in nonsedated newborn lambs, in contrast to nPSV. This may be an additional advantage of nHFOV relative to nPSV.
In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.