The measurement of glycemia is impacted by several constraints; those constraints have to be identified and quantified when designing an electromagnetic noninvasive sensor. The second phase concerns the level of the influence of these constraints. In this work, we investigated the impact of vein radius located in the forearm on a resonant microwave sensor to measure glycemia. We performed a numerical simulation using COMSOL Multiphysics of a proposed tissue model that was in contact with a microwave resonator. Some other factors affect the measurement, such as temperature, perfusion, sensor positioning and motion, tissue heterogeneity, and other biological activity. The sensor must be robust to the above-mentioned constraints. Because vein size changes from one person to another, the dielectric properties seen by the sensor will be different. This has been demonstrated by the change created in the resonance frequency of the simulated sensor for different vein sizes. The second constraint that was assessed is the dosimetry. The specific absorption rate (SAR) of any electromagnetic device should be evaluated and compared with SAR limits in the safety standards to ensure the safety of the user. Simulation results are in good agreement with SAR limits in the safety standards.
In this work, we carried out the study of electrical characteristics with two-dimensional numerical analysis by using the Aided Design (TCAD Silvaco) software for CdS/CuInGaSe2 (CIGS) thin solar cells. Their structure is composed of a thin CIGS solar cell in the configuration: ZnO(200 nm)/CdS(50 nm)/CIGS (350 nm)/Mo. Then ZnO is used for conductive oxide contacted transparent front of the cell. For rear contact, the molybdenum (Mo) is used. The layer of the CdS window and the shape of the CIGS absorber is the n-p semiconductor heterojunction. The performance of the cell was evaluated by applying the defects created in the grain joints of polycrystalline CdS and CIGS material and CIGS/CdS interface in the model, and the physical parameters used in the TCAD simulations have been calibrated to reproduce experimental data. The J–V characteristics are simulated under AM1.5 illumination conditions. The conversion efficiency (η) 20.10% has been reached, and the other characteristic parameters have been simulated: the open-circuit voltage (Voc) is 0.68 V, the circuit-current density (Jsc) is equal to 36.91 mA/cm2, and the form factor (FF) is 0.80. The simulation results showed that the molar fraction x of the CIGS layer has an optimal value around 0.31 corresponding to a gap energy of 1.16 eV, this result is in very good agreement with that found experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.