Abstract:The biological pigment melanin is present in most of the biological systems. It manifests a host of biological and pharmacological properties. Its role as a molecule with special properties and functions affecting general health, including photoprotective and immunological action, are well recognized. Its antioxidant, anti-inflammatory, immunomodulatory, radioprotective, hepatic, gastrointestinal and hypoglycaemic benefits have only recently been recognized and studied. It is also associated with certain disorders of the nervous system. In this MiniReview, we consider the steadily increasing literature on the bioavailability and functional activity of melanin. Published literature shows that melanin may play a number of possible pharmacological effects such as protective, stimulatory, diagnostic and curative roles in human health. In this MiniReview, possible health roles and pharmacological effects are considered.
BackgroundNanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs) on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use.MethodsA total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days) to investigate particle-size, dose and exposure duration effects of GNPs on the hepatic tissue.ResultsIn comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis.ConclusionsThe hepatocytes swelling might be exhibited as a result of disturbances of membranes function that lead to massive influx of water and Na+ due to GNPs effects accompanied by leakage of lysosomal hydrolytic enzymes that lead to cytoplasmic degeneration and macromolecular crowding. Hydropic degeneration is a result of ion and fluid homestasis that lead to an increase of intracellular water. The vacuolated swelling of the cytoplasm of the hepatocytes of the GNPs treated rats might indicate acute and subacute liver injury induced by the GNPs. Binucleation represents a consequence of cell injury and is a sort of chromosomes hyperplasia which is usually seen in regenerating cells. The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the hepatocytes to undergo atrophy and necrosis. More histomorphologcal, histochemical and ultrastrucural investigations are needed in relation of the application of GNPs with their potential role as a therapeutic and diagnostic tool.
BackgroundGold nanoparticles (AuNPs) are finding increased use in therapeutics and imaging. However, their toxic effects still remain to be elucidated. Therefore this study was undertaken to study the biochemical effects of AuNPs on rat brain and identify potential biomarkers of AuNP toxicity.MethodsMale Wister rats weighing 150–200 g were injected with 20 μg/kg body weight of 20-nm gold nanoparticles for 3 days through the intraperitoneal route. The rats were killed by carbon dioxide asphyxiation 24 h after the last dose of gold nanoparticle injection. The parameters studied included lipid peroxidation, glutathione peroxidase, 8- hydroxydeoxyguanosine, caspase-3, heat shock protein70, serotonin, dopamine, gamma amino-butyric acid and interferon-γ.ResultsIn this study AuNPs caused generation of oxidative stress and a decrease of antioxidant enzyme, viz., glutathione peroxidase activity in rat brain. This was accompanied by an increase in 8-hydroxydeoxyguanosine, caspase-3 and heat shock protein70, which might lead to DNA damage and cell death. Gold nanoparticles also caused a significant decrease in the levels of neurotransmitters like dopamine and serotonin, indicating a possible change in the behavior of the treated animals. There was a significant increase in the cerebral levels of IFN-γ in treated animals.ConclusionThis study concludes that AuNPs cause generation of oxidative stress and an impairment of the antioxidant enzyme glutathione peroxidase in rat brain. AuNPs also cause generation of 8-hydroxydeoxyguanosine (8OHdG), caspase-3 and heat shock protein70 (Hsp70), and IFN-γ, which may lead to inflammation and DNA damage/cell death.
BackgroundAdvances in nanotechnology have identified promising candidates for many biological, biomedical and biomedicine applications. They are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the effects of administration of gold nanoparticles (GNPs) on inflammatory cells infiltration, central vein intima disruption, fatty change, and Kupffer cells hyperplasia in the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use.MethodsA total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups, 12 GNPs-treated rats groups and one control group (NG). Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days), size 20 nm (3 or 7 days) and 50 nm (3 or 7 days), respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively.ResultsIn comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. In addition, inflammatory cell infiltration, Kupffer cells hyperplasia, central veins intima disruption, hepatic strands dilatation and occasional fatty change together with a loss of normal architechiture of hepatic strands were also seen.ConclusionsThe alterations induced by the administration of GNPs were size-dependent with smaller ones induced more affects and related with time exposure of GNPs. These alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These histological alterations may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS) generation which in turn may induce stress in the hepatocytes to undergo necrosis.
Background: The light absorption and emission characteristics of Gold Nanoparticles (GNPs) are exploited in detection and treatment of cancer. The properties of Nanoparticles (NPs) give them high potential for use in various medical applications, particularly in diagnostics and therapy where they promise increased sensitivity, speed, and costeffectiveness. The Ultraviolet-Visible and fluorescence properties of non-functionalized GNPs have not thus far been comprehensively documented. This study evaluated the absorption and fluorescence spectra for solutions of GNPs at different concentrations. Methods: The mean sizes of these GNPs were calculated from Transmission Electron Microscope (TEM) images, which were also used to study the morphology of the GNPs. UV-Visible and fluorescence measurements, were made from 250-700 nm using 1 cm quartz cuvettes. Results: When the GNP size changed from 10 nm to 50 nm, the maximum extinction of the Surface Plasmon Band (SPB) shifted from 517 nm to 532 nm in the visible region which may be attributed to the surface plasmon oscillation of free electrons. At constant GNP size, the absorbance was found to be proportional to the concentration of gold. This is because an increased number of GNPs also increases the total surface for surface plasmon resonance. The Photoluminescence (PL) band centre appears at 423 nm. An increase in fluorescence intensity with increase in GNP size was observed. At a fixed GNP size of 10 nm, and with increasing GNP concentration, the intensity of the emission band increased, which was consistent with the changes observed for the surface plasmon band of GNPs. Conclusions: The absorption intensity and maxima are particle size dependent. The surface plasmon resonance of the gold particles is red shifted (from 517 to 532 nm) with increasing particle size. These results indicate that the fluorescence intensity and the absorption band of GNPs were concentration and particle size dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.