Remote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM) are introduced. In this paper, we propose and implement land use classification based on improved SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants are applied for the cross-validation to determine how the optimization of parameters can affect the accuracy. The accuracy assessment includes both training and test sets, addressing the problems of overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images. Furthermore, the MLC and MDC are mathematically modeled and characterized with new features. Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.
The cloud computing environment provides easy-to-access service for private and confidential data. However, there are many threats to the leakage of private data. This paper focuses on investigating the vulnerabilities of cloud service providers (CSPs) from three risk aspects: management risks, law risks, and technology risks. Additionally, this paper presents a risk assessment model that is based on grey system theory (GST), defines indicators for assessment, and fully utilizes the analytic hierarchy process (AHP). Furthermore, we use the GST to predict the risk values by using the MATLAB platform. The GST determines the bottom evaluation sequence, while the AHP calculates the index weights. Based on the GST and the AHP, layer-based assessment values are determined for the bottom evaluation sequence and the index weights. The combination of AHP and GST aims to obtain systematic and structured well-defined procedures that are based on step-by-step processes. The AHP and GST methods are applied successfully to handle any risk assessment problem of the CSP. Furthermore, substantial challenges are encountered in determining the CSP's response time and identifying the most suitable solution out of a specified series of solutions. This issue has been handled using two additive features: the response time and the grey incidence. The final risk values are calculated and can be used for prediction by utilizing the enhanced grey model (EGM) (1,1), which reduces the prediction error by providing direct forecast to avoid the iterative prediction shortcoming of standard GM (1,1). Thus, EGM (1,1) helps maintain the reliability on a larger scale despite utilizing more prediction periods. Based on the experimental results, we evaluate the validity, accuracy, and response time of the proposed approach. The simulation experiments were conducted to validate the suitability of the proposed model. The simulation results demonstrate that our risk assessment model contributes to reducing deviation to support CSPs with the three adopted models.INDEX TERMS Analytic hierarchy process, cloud service provider, deviation reduction, grey model, risk assessment.
Abstract-Nowadays, Wireless Sensor Networks (WSN's) are becoming more and more promising and applicable to a variety of fields: military, environmental, medical, wild life habitat, and transportation as well wearable devices, target-tracking. WSN are expected to be a main player in the Internet of Things technology. Power management is very important factor in considering WSN's and it has been demonstrated that communication cost is higher than the computational as nodes consume most of the energy in communication. Added to the fact that sensors could be closely deployed and report the same reading, the data aggregation concept was introduced to resolve those issues and for the sake of better performance at a reduced cost. Nonetheless, sensing devices are prone to failure due to several aspects such as node failure or low batteries as well as being compromised. In this paper, we are introducing a novel method Secure Data Aggregation Model (SDAM) aiming at assuring a secure aggregate communication at a low cost (in terms of resources). Our simulation results showed that implementing SDAM resulted into an increase in the energy efficiency as well as a considerable reduction in cross-layering overhead.Keywords-availability, base station (BS), cluster head (CH), secure Data Aggregation model (SDAM), sensor node (SN), wireless sensor network (WSN).
Cloud computing has become a prominent technology due to its important utility service; this service concentrates on outsourcing data to organizations and individual consumers. Cloud computing has considerably changed the manner in which individuals or organizations store, retrieve, and organize their personal information. Despite the manifest development in cloud computing, there are still some concerns regarding the level of security and issues related to adopting cloud computing that prevent users from fully trusting this useful technology. Hence, for the sake of reinforcing the trust between cloud clients (CC) and cloud service providers (CSP), as well as safeguarding the CC’s data in the cloud, several security paradigms of cloud computing based on a third-party auditor (TPA) have been introduced. The TPA, as a trusted party, is responsible for checking the integrity of the CC’s data and all the critical information associated with it. However, the TPA could become an adversary and could aim to deteriorate the privacy of the CC’s data by playing a malicious role. In this paper, we present the state of the art of cloud computing’s privacy-preserving models (PPM) based on a TPA. Three TPA factors of paramount significance are discussed: TPA involvement, security requirements, and security threats caused by vulnerabilities. Moreover, TPA’s privacy preserving models are comprehensively analyzed and categorized into different classes with an emphasis on their dynamicity. Finally, we discuss the limitations of the models and present our recommendations for their improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.