Newsletters and social networks can reflect the opinion about the market and specific stocks from the perspective of analysts and the general public on products and/or services provided by a company. Therefore, sentiment analysis of these texts can provide useful information to help investors trade in the market. In this paper, a hierarchical stack of Transformers model is proposed to identify the sentiment associated with companies and stocks, by predicting a score (of data type real) in a range between -1 and +1. Specifically, we fine-tuned a RoBERTa model to process headlines and microblogs and combined it with additional Transformer layers to process the sentence analysis with sentiment dictionaries to improve the sentiment analysis. We evaluated it on financial data released by SemEval-2017 task 5 and our proposition outperformed the best systems of SemEval-2017 task 5 and strong baselines. Indeed, the combination of contextual sentence analysis with the financial and general sentiment dictionaries provided useful information to our model and allowed it to generate more reliable sentiment scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.