Combination of multiple information extracted from different biometric modalities in multimodal biometric recognition system aims to solve the different drawbacks encountered in a unimodal biometric system. Fusion of many biometrics has proposed such as face, fingerprint, iris…etc. Recently, electrocardiograms (ECG) have been used as a new biometric technology in unimodal and multimodal biometric recognition system. ECG provides inherent the characteristic of liveness of a person, making it hard to spoof compared to other biometric techniques. Ear biometrics present a rich and stable source of information over an acceptable period of human life. Iris biometrics have been embedded with different biometric modalities such as fingerprint, face and palm print, because of their higher accuracy and reliability. In this paper, a new multimodal biometric system based ECG-eariris biometrics at feature level is proposed. Preprocessing techniques including normalization and segmentation are applied to ECG, ear and iris biometrics. Then, Local texture descriptors, namely 1D-LBP (One D-Local Binary Patterns), Shifted-1D-LBP and 1D-MR-LBP (Multi-Resolution) are used to extract the important features from the ECG signal and convert the ear and iris images to a 1D signals. KNN and RBF are used for matching to classify an unknown user into the genuine or impostor. The developed system is validated using the benchmark ID-ECG and USTB1, USTB2 and AMI ear and CASIA v1 iris databases. The experimental results demonstrate that the proposed approach outperforms unimodal biometric system. A Correct Recognition Rate (CRR) of 100% is achieved with an Equal Error Rate (EER) of 0.5%.
A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contaminated or faulty seal area, only relevant bands are selected using data fusion. These techniques greatly improve the computation time while maintaining a high classification ratio, showing that the fused image contains enough information for checking a food tray sealing state (faulty or normal), avoiding feeding a large image datacube to the DL algorithms. Additionally, the proposed DL algorithms do not require any prior handcraft approach, i.e., no manual tuning of the parameters in the algorithms are required since the training process adjusts the algorithm. The experimental results, validated using an industrial dataset for food trays, along with different deep learning methods, demonstrate the effectiveness of the proposed approach. In the studied dataset, an accuracy of 88.7%, 88.3%, 89.3%, and 90.1% was achieved for Deep Belief Network (DBN), Extreme Learning Machine (ELM), Stacked Auto Encoder (SAE), and Convolutional Neural Network (CNN), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.