Tomorrow’s agriculture, challenged by increasing global demand for food, scarcity of arable lands, and resources alongside multiple environment pressures, needs to be managed smartly through sustainable and eco-efficient approaches. Modern agriculture has to be more productive, sustainable, and environmentally friendly. While macronutrients such as nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) supplied by mineral fertilizers are vital to crop production, agriculturally beneficial microorganisms may also contribute directly (i.e., biological N2 fixation, P solubilization, and phytohormone production, etc.) or indirectly (i.e., antimicrobial compounds biosynthesis and elicitation of induced systemic resistance, etc.) to crop improvement and fertilizers efficiency. Microbial-based bioformulations that increase plant performance are greatly needed, and in particular bioformulations that exhibit complementary and synergistic effects with mineral fertilization. Such an integrated soil fertility management strategy has been demonstrated through several controlled and non-controlled experiments, but more efforts have to be made in order to thoroughly understand the multiple functions of beneficial microorganisms within the soil microbial community itself and in interaction with plants and mineral resources. In fact, the combined usage of microbial [i.e., beneficial microorganisms: N2-fixing (NF), P-solubilizing, and P mobilizing, etc.] and mineral resources is an emerging research area that aims to design and develop efficient microbial formulations which are highly compatible with mineral inputs, with positive impacts on both crops and environment. This novel approach is likely to be of a global interest, especially in most N- and P-deficient agro-ecosystems. In this review, we report on the importance of NF bacteria and P solubilizing/mobilizing microbes as well as their interactions with mineral P fertilization in improving crop productivity and fertilizers efficiency. In addition, we shed light on the interactive and synergistic effects that may occur within multi-trophic interactions involving those two microbial groups and positive consequences on plant mineral uptake, crop productivity, and resiliency to environmental constraints. Improving use of mineral nutrients is a must to securing higher yield and productivity in a sustainable manner, therefore continuously designing, developing and testing innovative integrated plant nutrient management systems based on relevant biological resources (crops and microorganisms) is highly required.
Water shortage and soil nutrient depletion are considered the main factors limiting crops productivity in the Mediterranean region characterized by longer and frequent drought episodes. In this study, we investigated the interactive effects of P fertilizer form and soil moisture conditions on chickpea photosynthetic activity, water and nutrient uptake, and their consequent effects on biomass accumulation and nutrient use efficiency. Two P fertilizer formulas based on orthophosphates (Ortho-P) and polyphosphates (Poly-P) were evaluated under three irrigation regimes (I1: 75% of field capacity, I2: 50% FC and I3: 25% FC), simulating three probable scenarios of soil water content in the Mediterranean climate (adequate water supply, medium, and severe drought stress), and compared to an unfertilized treatment. The experiment was conducted in a spilt-plot design under a drip fertigation system. The results showed significant changes in chickpea phenotypic and physiological traits in response to different P and water supply regimes. Compared with the unfertilized treatment, the stomata density and conductance, chlorophyll content, photosynthesis efficiency, biomass accumulation, and plant nutrient uptake were significantly improved under P drip fertigation. The obtained results suggested that the P fertilizer form and irrigation regime providing chickpea plants with enough P and water, at the early growth stage, increased the stomatal density and conductance, which significantly improved the photosynthetic performance index (PIABS) and P use efficiency (PUE), and consequently biomass accumulation and nutrient uptake. The significant correlations established between leaf stomatal density, PIABS, and PUE supported the above hypothesis. We concluded that the Poly-P fertilizers applied in well-watered conditions (I1) performed the best in terms of chickpea growth improvement, nutrient uptake and use efficiency. However, their effectiveness was greatly reduced under water stress conditions, unlike the Ortho-P form which kept stable positive effects on the studied parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.