We propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count. Unsupervised clustering of individual trajectories generates mobility profiles (clusters of similar individual trajectories) which characterize relevant group behaviors preserving optimal aggregation levels for detailed and privacy-secured mobility characterization. The application of the proposed framework is illustrated by analyzing fully anonymized data on human mobility from mobile phones in Senegal at the arrondissement level over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolution resulted in the discovery and characterization of seasonal mobility profiles related with economic activities, agricultural calendars and rainfalls. The use of these mobility profiles could support the timely identification of mobility changes in vulnerable populations in response to external shocks (such as natural disasters, civil conflicts or sudden increases of food prices) to monitor food security.
The understanding of rider/vehicle interaction modalities remains an issue, specifically in the case of bend-taking. This difficulty results both from the lack of adequate instrumentation to conduct this type of study and from the variety of practices of this population of road users. Riders have numerous explanations of strategies for controlling their motorcycles when taking bends. The objective of this paper is to develop a data-driven methodology in order to identify typical riding behaviors in bends by using clustering methods. The real dataset used for the experiments is collected within the VIROLO++ collaborative project to improve the knowledge of actual PTW riding practices, especially during bend taking, by collecting real data on this riding situation, including data on PTW dynamics (velocity, normal acceleration, and jerk), position on the road (road curvature), and handlebar actions (handlebar steering angle). A detailed analysis of the results is provided for both the Anderson–Darling test and clustering steps. Moreover, the clustering results are compared with the subjective data of subjects to highlight and contextualize typical riding tendencies. Finally, we perform an in-depth analysis of the bend-taking practices of one subject to highlight the differences between different methods of controlling the motorcycle (steering handlebar vs. rider’s lean) using the rider action measurements made by pressure sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.