The densely functionalized graphene oxide (GO) surface and the two-dimensional carbon structure had provided a unique opportunity for supporting photocatalysts. Concerning GO-based photocatalysis, GO plays the role of an electron acceptor that accelerates the interfacial electron-transfer process, recombination retardant of charge carriers, finetuner for the electronic and chemical properties of the supported photocatalysts, and finally, a carrier transport between different active sites. Moreover, standalone GO is a p-doped semiconductor material with the π* orbital of the oxygen remains as the conduction band minimum (CBM) while the valance band maximum (VBM) changes gradually from the p-orbital of carbon to the 2p orbital of oxygen upon oxidation. The outstanding features of the GO-based photocatalysis opened the way to serve the progress in many environmental applications including water treatment, air purification, water splitting, CO 2 conversion, and sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.