Timing of germination is presumably under strong natural selection as it determines the environmental conditions in which a plant germinates and initiates its postembryonic life cycle. To investigate how seed dormancy is controlled, quantitative trait loci (QTL) analyses has been performed in six Arabidopsis thaliana recombinant inbred line populations by analyzing them simultaneously using a mixed model QTL approach. The recombinant inbred line populations were derived from crosses between the reference accession Landsberg erecta (Ler) and accessions from different world regions. In total, 11 delay of germination (DOG) QTL have been identified, and nine of them have been confirmed by near isogenic lines (NILs). The absence of strong epistatic interactions between the different DOG loci suggests that they affect dormancy mainly by distinct genetic pathways. This was confirmed by analyzing the transcriptome of freshly harvested dry seeds of five different DOG NILs. All five DOG NILs showed discernible and different expression patterns compared with the expression of their genetic background Ler. The genes identified in the different DOG NILs represent largely different gene ontology profiles. It is proposed that natural variation for seed dormancy in Arabidopsis is mainly controlled by different additive genetic and molecular pathways rather than epistatic interactions, indicating the involvement of several independent pathways. recombinant inbred lines | quantitative trait loci analyses | near isogenic lines | transcriptome analyses S eed dormancy is an important adaptive trait that together with flowering time is a primary component of the different life history strategies of plants (1). Seasonal timing of germination might well be a stronger factor conditioning the flowering time of Arabidopsis in the field than variation in the genetic basis for flowering time itself (2). Seed dormancy controls the timing of germination by arresting growth and development, despite the presence of favorable environmental conditions to complete germination. Specific environmental and developmental triggers can overcome this arrest. Environmental factors can act during seed development on the mother plant, during seed storage (i.e., after-ripening; AR) and in mature imbibed seeds. The various aspects of seed dormancy and germination have been extensively reviewed recently (3-6). In addition, it has been shown that there is considerable variation for seed dormancy in nature (7-9). The identification of the genes underlying this natural variation for seed dormancy may help to further understand the mechanisms involved in this process. At the same time, it provides insight into the way nature shaped genetic variability for this trait during adaptive evolution. A common approach to discover genes that control quantitative traits is the use of whole-genome scans to identify quantitative trait loci (QTL). These analyses provide estimates of several genetic parameters that underlie phenotypic variation, including the number of loci, th...
Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new recombinant inbred line population derived from a cross between the accessions Landsberg erecta (Ler) and Shakdara (Sha). A set of 114 F9 recombinant inbred lines was genotyped with 65 polymerase chain reaction-based markers and the phenotypic marker erecta. The traits analyzed were dormancy, speed of germination, seed sugar content, seed germination after a controlled deterioration test, hydrogen peroxide (H 2 O 2 ) treatment, and on abscisic acid. Furthermore, the effects of heat stress, salt (NaCl) stress, osmotic (mannitol) stress, and natural aging were analyzed. For all traits one or more QTLs were identified, with some QTLs for different traits colocating. The relevance of colocation for mechanisms underlying the various traits is discussed.
Arabidopsis natural variation was used to analyze the genetics of plant growth rate. Screening of 22 accessions revealed a large variation for seed weight, plant dry weight and relative growth rate but not for water content. A positive correlation was observed between seed weight and plant area 10 d after planting, suggesting that seed weight affects plant growth during early phases of development. During later stages of plant growth this correlation was not significant, indicating that other factors determine growth rate during this phase. Quantitative trait locus (QTL) analysis, using 114 (F9 generation) recombinant inbred lines derived from the cross between Landsberg erecta (Ler, from Poland) and Shakdara (Sha, from Tadjikistan), revealed QTLs for seed weight, plant area, dry weight, relative growth rate, chlorophyll fluorescence, flowering time, and flowering-related traits. Growth traits (plant area, dry weight, and relative growth rate) colocated at five genomic regions. At the bottom of chromosome 5, colocation was found of QTLs for leaf area, leaf initiation speed, specific leaf area, and chlorophyll fluorescence but not for dry weight, indicating that this locus might be involved in leaf development. No consistent relation between growth traits and flowering time was observed despite some colocations. Some of the QTLs detected for flowering time overlapped with loci detected in other recombinant inbred line populations, but also new loci were identified. This study shows that Arabidopsis can successfully be used to study the genetic basis of complex traits like plant growth rate.
The SNPWave marker system, based on SNPs between the reference accessions Colombia-0 and Landsberg erecta (Ler), was used to distinguish a set of 92 Arabidopsis accessions from various parts of the world. In addition, we used these markers to genotype three new recombinant inbred line populations for Arabidopsis, having Ler as a common parent that was crossed with the accessions Antwerp-1, Kashmir-2, and Kondara. The benefit of using multiple populations that contain many similar markers and the fact that all markers are linked to the physical map of Arabidopsis facilitates the quantitative comparison of maps. Flowering-time variation was analyzed in the three recombinant inbred line populations. Per population, four to eight quantitative trait loci (QTL) were detected. The comparison of the QTL positions related to the physical map allowed the estimate of 12 different QTL segregating for flowering time for which Ler has an allele different from one, two, or three of the other accessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.