Tool wear monitoring has become more vital in intelligent production to enhance Computer Numerical Control CNC machine health state. Multidomain features may effectively define tool wear status and help tool wear prediction. Prognostics and health management (PHM) plays a vital role in conditionbased maintenance (CBM) to prevent rather than detect malfunctions in machinery. This has great advantage of saving costs of fault repair including human effort, financial costs as long as power and energy consumption. The huge evolution of Industrial Internet of Things (IIOT) and industrial big data analytics has made Deep Learning a growing field of research.The PHM society has held many competitions including PHM10 concerning CNC milling machine cutters data for tool wear prediction The purpose of this paper is to predict tool wear of CNC cutters. We adopted a multi-domain feature extraction method for health statement of the cutters. and a deep neural network DNN method for tool wear prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.