Mobile edge computing (MEC) is a recent technology that intends to free mobile devices from computationally intensive workloads by offloading them to a nearby resource-rich edge architecture. It helps to reduce network traffic bottlenecks and offers new opportunities regarding data and processing privacy. Moreover, MEC-based applications can achieve lower latency level compared to cloud-based ones. However, in a multitask multidevice context, the decision of the part to offload becomes critical. Actually, it must consider the available communication resources, the resulting delays that have to be met during the offloading process, and particularly, both local and remote energy consumption. In this paper, we consider a multitask multidevice scenario where smart mobile devices retain a list of heavy offloadable tasks that are delay constrained. Therefore, we formulated the corresponding optimization problem, and we derive an equivalent multiple-choice knapsack problem formulation. Because of the short decision time constraint and the NP-hardness of the obtained problem, the optimal solution implementation is infeasible. Hence, we propose a solution that provides, in pseudopolynomial time, the optimal or near-optimal solutions depending on the problem's settings. In order to evaluate our solution, we carried out a set of simulation experiments to evaluate and compare the performances of the different components of this solution. Finally, the obtained results in terms of execution's time as well as energy consumption are satisfactory and very encouraging.
In recent years, the importance of the mobile edge computing (MEC) paradigm along with the 5G, the Internet of Things (IoT) and virtualization of network functions is well noticed. Besides, the implementation of computation-intensive applications at the mobile device level is limited by battery capacity, processing capabalities and execution time. To increase the batteries life and improve the quality of experience for computationally intensive and latency-sensitive applications, offloading some parts of these applications to the MEC is proposed. This paper presents a solution for a hard decision problem that jointly optimizes the processing time and computing resources in a mobile edge-computing node. Hence, we consider a mobile device with an offloadable list of heavy tasks and we jointly optimize the offloading decisions and the allocation of IT resources to reduce the latency of tasks’ processing. Thus, we developped a heuristic solution based on the simulated annealing algorithm, which can improve the offloading rate and reduce the total task latency while meeting short decision time. We performed a series of experiments to show its efficiency. Finally, the obtained results in terms of full-time treatrement are very encouraging. In addition, our solution makes offloading decisions within acceptable and achievable deadlines.
<span>With the fifth-generation (5G) networks, Mobile edge computing (MEC) is a promising paradigm to provide near computing and storage capabilities to smart mobile devices. In addition, mobile devices are most of the time battery dependent and energy constrained while they are characterized by their limited processing and storage capacities. Accordingly, these devices must offload a part of their heavy tasks that require a lot of computation and are energy consuming. This choice remains the only option in some circumstances, especially when the battery drains off. Besides, the local CPU frequency allocated to processing has a huge impact on devices energy consumption. Additionally, when mobile devices handle many tasks, the decision of the part to offload becomes critical. Actually, we must consider the wireless network state, the available processing resources at both sides, and particularly the local available battery power. In this paper, we consider a single mobile device that is energy constrained and that retains a list of heavy offloadable tasks that are delay constrained. Therefore, we formulated the corresponding optimization problem, and proposed a Simulated Annealing based heuristic solution scheme. In order to evaluate our solution, we carried out a set of simulation experiments. Finally, the obtained results in terms of energy are very encouraging. Moreover, our solution performs the offloading decisions within an acceptable and feasible timeframes.</span>
<span id="docs-internal-guid-bef24e0c-7fff-7c19-7865-2ba99054831c"><span>The whole world is inundated with smaller devices equipped with wireless communication interfaces. At the same time, the amount of data generated by these devices is becoming more important. The smaller size of these devices has the disadvantage of being short of processing and storage resources (memory, processes, energy,...), especially when it needs to process larger amounts of data. In order to overcome this weakness and process massive data, devices must help each other. A low-resource node can delegate the execution of a set of computionly heavy tasks to another machine in the network to process them for it. The machine with sufficient computational resources must also deposit the appropriate environment represented by the adapted virtual machine. Thus, in this paper, in order to migrate the virtual machine to an edge server in a mobile edge computing environment, we have proposed an approach based on artificial intelligence. More specifically, the main idea of this paper is to cut a virtual machine into several small pieces and then send them to an appropriate target node (Edge Server) using the ant colony algorithm. In order to test and prove the effectiveness of our approach, several simulations are made by NS3. The obtained results show that our approach is well adapted to mobile environments.</span></span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.