Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.
This research was conducted on mature pomegranate (Punica granatum L. “Wonderful”) trees growing at a site located in North Coast, Matrouh Governorate, Egypt. The aim was to investigate the impacts of different irrigation regimes in combination with different fertilizer regimes on the fruit set, fruit retention, yield, and nutritional status of the trees. The experimental factors were arranged in a split-plot design, with four replicates per treatment combination. The results indicated that all of the characteristics measured, including leaves nutritional status, percentages of fruit set, fruit drop, fruit retention, fruit cracking, fruit sunburn, and marketable fruit, and yield were significantly affected by the interaction between the irrigation treatment which denoted by percentages of reference evapotranspiration (ETo) and fertilizer regime. The application of 75% mineral fertilizer + 25% organic manure under deficit irrigation of 80% ETo increased the yield by an average of 18.23% over the 2 years compared with 100% mineral fertilization under full irrigation, while 50% mineral fertilizer + 50% organic matter under 80% ETo gave the maximum percentage of marketable fruit (86.23% and 86.84% in 2018 and 2019, respectively). The maximum water use efficiency was obtained with the 80% ETo treatment combined with 75% mineral fertilizer + 25% organic manure in both seasons with values of 9.69 and 10.06 kg/m3 applied water, respectively. These results demonstrate that under the field conditions at the experimental site, the fruit set and retention could be improved by applying a reduced amount of mineral fertilizer in combination with organic manure and less irrigation water.
Background
The aim of this study was to determine the individual and interactive effects of various irrigation regimes and fertilizer treatments on the quality of the Wonderful pomegranate cultivar.
Methods
Two field experiments were conducted over two consecutive growing seasons (2018 and 2019) to determine the individual and interactive effects of various organic and mineral fertilizer treatments on the fruit quality of the Wonderful pomegranate under various irrigation conditions. A split-plot experimental design was used, in which the main plots included three levels of irrigation (100%, 80%, and 60% of evapotranspiration) while the subplots included five fertilizer treatments with different co-application ratios of mineral and organic fertilizers.
Results
All tested physicochemical properties of the fruit were significantly affected by the irrigation treatment, with irrigation at 80% of evapotranspiration representing the best strategy for reducing water use and improving fruit quality. Moreover, the co-application of mineral and organic fertilizers had a significant effect on fruit quality, with 75% mineral + 25% organic fertilizer improving all of the physical and chemical properties of the fruit in both experimental seasons. Irrigation and the co-application of mineral and organic fertilizers also had a significant interaction effect on the physicochemical attributes of fruit, which further increased fruit quality.
Conclusions
The co-application of organic and mineral fertilizers produced better quality pomegranate fruit than mineral fertilizer alone under deficit irrigation conditions. This technique could therefore be applied to improve the fruiting of horticultural trees in arid growing regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.