Inflammation is regulated by many endogenous factors including estrogen, a steroid hormone that declines with increasing age, leading to excessive inflammation in the elderly. C-reactive protein (CRP) is an acute phase inflammatory protein that exists in two forms, native CRP (nCRP) and monomeric CRP (mCRP), which mediate distinct biological activities. It is unclear how each CRP isoform mediates nitric oxide (NO), a signaling molecule generated by NO synthase (NOS). This study investigated whether CRP isoforms have distinct effects on NO production by unstimulated and lipopolysaccharide (LPS)-activated monocytes/macrophages and whether estrogen mediates CRP-induced NO production in an in vitro model of aging. NO and inducible NOS (iNOS) were measured (n = 12) by the Griess assay and an enzyme-linked immunosorbent assay, respectively following incubation (24 h) of human-derived U937 monocytes/macrophages with CRP isoforms [(nCRP) = 500 and 1,000 µg/ml; (mCRP) = 100 and 250 µg/ml] in the absence or presence of 17 beta-estradiol (1 × 10−7, 1 × 10−8, and 1 × 10−9 M). The response to each CRP isoform and estrogen was dependent on the differentiation and activation status of cells. Monocytes with or without prior LPS-activation significantly increased (P < 0.01) NO/iNOS production when treated with mCRP. The mCRP isoform had no effect (P > 0.05) on NO/iNOS production by unactivated or LPS-activated macrophages, whereas nCRP significantly (P < 0.05) reduced NO/iNOS production by macrophages, with or without prior LPS-activation. The nCRP isoform had opposing actions on monocytes, significantly (P < 0.01) increasing and reducing NO/iNOS by unactivated and LPS-activated monocytes, respectively. Estrogen significantly (P < 0.01) reversed nCRP-mediated NO inhibition by unactivated macrophages but decreased CRP-induced NO by unactivated monocytes treated with nCRP or mCRP and LPS-activated monocytes treated with mCRP. NO was differentially mediated by CRP isoforms in a cell-type/state-specific manner, with production corresponding to concomitant changes in iNOS levels. Collectively, the findings indicate nCRP and estrogen predominantly reduce NO production, whereas mCRP increases NO production. This supports growing evidence that mCRP exacerbates inflammation while nCRP and estrogen dampen the overall inflammatory response. Therapeutic strategies that restore estrogen levels to those found in youth and promote the stability of nCRP or/and prevent the formation of mCRP may reduce NO production in age-related inflammatory conditions.
Arabinoxylans (AXs) are major dietary fibre in cereals. Recently, AXs have attracted a great deal of attention because of their biological activities. These activities have been suggested to be related to the content of low molecular weight (Mw) AXs, in particular those with Mw below 32 kDa. Rice bran is a rich source of AXs. However, water extraction of AXs is difficult and often gives low yield. Extrusion processing has been used to increase the solubility of cereal dietary fibre. The aim of this research was to study the effect of extrusion screw-speeds (80 and 160) rpm on the extraction yield and Mw of water extractable AXs from rice bran. It was found that the extraction of AXs increased significantly with an increase in screw speed and was accompanied by a significant decrease in the Mw of AXs from extruded rice bran. The percentage of very low molecular weight AXs (0.79-1.58 kDa) significantly increased with increasing screw speed.
The reduction of bacteria and biofilm formation is important when designing surfaces for use in industry. Molybdenum disulphide surfaces (MoS2SUR) were produced using MoS2 particle (MoS2PAR) sizes of 90 nm 2 µm and 6 µm containing MoS2PAR concentrations of 5%, 10%, 15% and 20%. These were tested to determine the efficacy of the MoS2SUR to impede bacterial retention and biofilm formation of two different types of bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. The MoS2SUR were characterised using Fourier Transform InfraRed Spectroscopy, Ion Coupled Plasma Atomic Emission Spectroscopy, Scanning Electron Microscopy, Optical Profilometry and Water Contact Angles. The MoS2SUR made with the smaller 90 nm MoS2PAR sizes demonstrated smaller topographical shaped features. As the size of the incorporated MoS2PAR increased, the MoS2SUR demonstrated wider surface features, and they were less wettable. The increase in MoS2PAR concentration within the MoS2SUR groups did not affect the surface topography but did increase wettability. However, the increase in MoS2PAR size increased both the surface topography and wettability. The MoS2SUR with the smaller topographical shaped features, influenced the retention of the S. aureus bacteria. Increased MoS2SUR topography and wettability resulted in the greatest reduction in bacterial retention and the bacteria became more heterogeneously dispersed and less clustered across the surfaces. The surfaces that exhibited decreased bacterial retention (largest particle sizes, largest features, greatest roughness, most wettable) resulted in decreased biofilm formation. Cytotoxicity testing of the surface using cell viability demonstrated that the MoS2SUR were not toxic against HK-2 cells at MoS2PAR sizes of 90 nm and 2 µm. This work demonstrated that individual surfaces variables (MoS2SUR topographic shape and roughness, MoS2PAR size and concentration) decreased bacterial loading on the surfaces, which then decreased biofilm formation. By optimising MoS2SUR properties, it was possible to impede bacterial retention and subsequent biofilm formation.
Burn infections caused by Pseudomonas aeruginosa pose a major complication in wound healing. This study aimed to determine the antimicrobial effect of metal ions, graphene (Gr), and graphene oxide (GO), individually and in combination, against the planktonic and biofilm states of two antimicrobially resistant clinical strains of P. aeruginosa each with different antibiotic resistance profiles. Minimum inhibitory, minimum bactericidal, and fractional inhibitory concentrations were performed to determine the efficacy of the metal ions and graphene composites individually and their synergy in combination. Crystal violet biofilm and XTT assays measured the biofilm inhibition and metabolic activity, respectively. Molybdenum, platinum, tin, gold, and palladium ions exhibited the greatest antimicrobial activity (MIC = 7.8–26.0 mg/L), whilst GO and Gr demonstrated moderate-to-no effect against the planktonic bacterial cells, irrespective of their antibiograms. Biofilms were inhibited by zinc, palladium, silver, and graphene. In combination, silver–graphene and molybdenum–graphene inhibited both the planktonic and biofilm forms of the bacteria making them potential candidates for development into topical antimicrobials for burns patients infected with antibiotic-resistant P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.