Satellite tracking control system is a control unit which automatically steers the parabolic antenna to the desired satellite. It precisely traces the satellite as it Spins in its orbit across the sky. In order to maintain continuous communication signal during multiple satellite tracking missions, the tracking process must be very fast and smooth with minimum deviations from the desired position. Over time, various controller models have been proposed to tackle the problem of antenna pointing in satellite as well as to track moveable targets utilizing servomechanism. This paper aims to present and discuss satellite tracking control system based on DC servo motor.
Satellite tracking control system is mechanism that redirects the parabolic antenna to the chosen satellite automatically. It perfectly tracks the satellite as it spins across the sky in its orbit. To maintain a continuous communication signal throughout multiple satellite tracking missions, the tracking process must be fast and smooth, with minimal deviations from the target position. Various controller models have been presented over time to address the problem of antenna positioning in satellite systems and to track moveable targets using servomechanism. The purpose of this study is to describe and debate a satellite tracking control system based on a DC servo motor. For optimal tuning of Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID) and Variable Coefficient Fractional Order PID (V-FOPID) controllers that were used in satellite control system, Particle Swarm Optimization (PSO), Gravitational Search Algorithm with Particle Swarm Optimization (GSA-PSO) and Eagle Strategy with Particle Swarm Optimization (ES-PSO) techniques were proposed. Dynamic Performance Indices Based Objective Functions is used to compute the Performance Index. Furthermore, Self-Tuning Fuzzy FOPID (STF-FOPID) is proposed for satellite tracking control system. The system's response is analyzed, and the outcomes of various control strategies are measured and compared to others. The obtained results implies that Variable Coefficient Fractional Order PID controller tuned using Eagle Strategy with Particle Swarm Optimization can precisely trace the desired position with the fastest settling time and free overshoot when compared to other control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.