The development of the agricultural sector is considered the backbone of sustainable development in Egypt. While the developing countries of the world face many challenges regarding food security due to rapid population growth and limited agricultural resources, this study aimed to assess the soils of Sidi Barrani and Salloum using multivariate analysis to determine the land capability and crop suitability for potential alternative crop uses, based on using principal component analysis (PCA), agglomerative hierarchical cluster analysis (AHC) and the Almagra model of MicroLEIS. In total, 24 soil profiles were dug, to represent the geomorphic units of the study area, and the soil physicochemical parameters were analyzed in laboratory. The land capability assessment was classified into five significant classes (C1 to C5) based on AHC and PCA analyses. The class C1 represents the highest capable class while C5 is assigned to lowest class. The results indicated that about 7% of the total area was classified as highly capable land (C1), which is area characterized by high concentrations of macronutrients (N, P, K) and low soil salinity value. However, about 52% of the total area was assigned to moderately high class (C2), and 29% was allocated in moderate class (C3), whilst the remaining area (12%) was classified as the low (C4) and not capable (C5) classes, due to soil limitations such as shallow soil depth, high salinity, and increased erosion susceptibility. Moreover, the results of the Almagra soil suitability model for ten crops were described into four suitability classes, while about 37% of the study area was allocated in the highly suitable class (S2) for wheat, olive, alfalfa, sugar beet and fig. Furthermore, 13% of the area was categorized as highly suitable soil (S2) for citrus and peach. On the other hand, about 50% of the total area was assigned to the marginal class (S4) for most of the selected crops. Hence, the use of multivariate analysis, mapping land capability and modeling the soil suitability for diverse crops help the decision makers with regard to potential agricultural development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.