International audienceA recently developed sparse representation algorithm, has been proved to be useful for multi-object tracking and this study is a proposal for developing its parallelisation. An online dictionary learning is used for object recognition. After detection, each moving object is represented by a descriptor containing its appearance features and its position feature. Any detected object is classified and indexed according to the sparse solution obtained by an orthogonal matching pursuit (OMP) algorithm. For a real-time tracking, the visual information needs to be processed very fast without reducing the results accuracy. However, both the large size of the descriptor and the growth of the dictionary after each detection, slow down the system process. In this work, a novel accelerating OMP algorithm implementation on a graphics processing unit is proposed. Experimental results demonstrate the efficiency of the parallel implementation of the used algorithm by significantly reducing the computation time
Abstract-Multi-object tracking is a challenging task, especially when the persistence of the identity of objects is required. In this paper, we propose an approach based on the detection and the recognition. To detect the moving objects, a background subtraction is employed. To solve the recognition problem, a classification system based on sparse representation is used. With an online dictionary learning, each detected object is classified according to the obtained sparse solution. Each column of the used dictionary contains a descriptor representing an object. Our main contribution is the representation of the moving object with a descriptor derived from a novel representation of its 2-D position and a histogram-based feature, improved by using the silhouette of this object. Experimental results show that the approach proposed for describing moving objects, combined with the classification system based on sparse representation provides a robust multi-object tracker in videos involving occlusions and illumination changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.