The availability of data is an important aspect in frequency analysis. This paper explores the joint use of lim- ited data from ground rainfall stations and TRMM data to develop Intensity Duration Frequency (IDF) curves, where very limited ground station rainfall records are available. Homogeneity of the means and variances are first checked for both types of data. The study zone is assumed to be belonging to the same region and checked using the Wiltshire test. An Index Flood procedure is adopted to generate the theoretical regional distribution equation. Rainfall depths at various return periods are calculated for all stations and plotted spatially. Regional patterns are identified and discussed. TRMM data are used to develop ratios between 24-hr rainfall depth and shorter duration depths. The regional patterns along with the developed ratios are used to develop regional IDF curves. The methodology is applied on a region in the North-West of Angola
In high-pressure flames that occur in many practical combustion devices such as industrial furnaces, rocket propulsion and internal engine combustion, the assumption of an ideal gas is not appropriate. The present paper presents a model that includes modifications of the equation of state, transport and thermodynamic properties. The model is implemented into a Fortran program that was developed to simulate numerically one-dimensional planar premixed flames. The influence of the modifications for the real gas behavior on the laminar flame speed and on flame structure is illustrated for stoichiometric H2-air flames at initial pressures ranging from 0.1 to 100 MPa.
This study presents video analysis of the hydraulic performance of a sluice gate with an unloaded upstream built-in rotor. A number of laboratory experiments were conducted using two unloaded rotor shapes. The first was the cross-shaped rotor and the second was the Savonius-like rotor. A new video analysis technique was introduced for measuring rotor angular speed and its perturbation. Swift speed cameras and Tracker software were used to measure the upstream backwater depth and to estimate the instantaneous variation of the rotor speed. The study shows that adding a rotor upstream of the gate caused the upstream water level to increase such that the averaged normalized afflux increased to 1.72 and 0.9 for the cross-shaped and the Savonius rotors, respectively. Lab experiments indicated that the water flow-structure interaction for the sluice-rotor is quite complex and nonlinear. Two main flow regimes were distinguished. The flow regimes are: the flow through a rotor with possible weir flow conditions and the orifice flow conditions. The time-averaged angular speed of the tested Savonius-like rotor ranged between 0 and 300 r/min. As the upstream backwater depth increased, the angular speed increased; however, the rate was significantly lower for the orifice flow condition compared to the flow under rotor and weir flow conditions. The video analysis also indicated that significant perturbation exists for the rotor angular speed. The normalized perturbation intensity varied from a minimum of 8% to a maximum of 60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.