Oases throughout the world have become important ecosystems to replenish food and water supplies. The Saharan Oases exist above the largest underground water supplies in the World. In North Africa, oases witness significantly growing populations in the oasis towns and receive thousands of tourists yearly. In oasis settlements, the majority of the population spends most of the time outdoors, in extremely hot conditions; however, few studies have investigated urban outdoor thermal comfort conditions. Therefore, this study aimed to assess thermal comfort in the Tolga Oasis Complex and test the validity of the 'oasis effect' concept. The methodology is based on comparative field measurement and calculation approaches in the heart of Tolga Palm Grove and in different urban settlements. Results indicate highest heat stress levels (Physiologically Equivalent Temperature (PET) index) in the oases Palm Grove in July, PET = 41.7 • C, and urban settlements, PET = 40.9 • C. Despite the significant difference between the old and new settlement fabrics, our measurements and calculation did not identify any noticeable variation of thermal comfort. Thus, the oasis effect on the outdoor thermal comfort was insignificant (during July and August 2018). Finally, the study discusses ways to improve outdoor spaces design and relieve heat stress in the settlements of Tolga.
Oases settlements are common entities of human agglomerations throughout desert regions. Oases settlements face several environmental challenges such as climate change, which can render them insufferably hot and unlivable within decades. Therefore, this study aims to assess the outdoor thermal comfort variation within three different oases urban fabrics of Tolga Oases Complex in Algeria. The overarching aim is to quantify thermal comfort and guide landscape, and urban designers improve outdoor thermal comfort. The methodology relies on microclimatic measurements and weather datasets (TMY2, TMY3, TMYx), combining observations and numerical simulations. A total of 648 Physiological Equivalent Temperature (PET) values were calculated in three different urban fabrics in Tolga Oases Complex, Algeria. Between 2003 and 2017, a remarkable microclimatic change was found, causing a high and accelerated heat stress level of 76%. The study results inform architects, urban planners and climatologists about climate change effects and urban sprawl impact on the oases lands. Moreover, urban strategies should seek mitigation and adaptation benefiting from the existing green infrastructure of palm groves.
This paper aimed to develop a multisensory approach in a university campus, based on quantitative and qualitative approaches, investigating sense walk experiences (thermo-visual sound walk) under interactions of luminous, thermal, and auditory environments. The study was conducted in October 2021, in Chetma university campus in Biskra city, southern Algeria, which remains a famous oasis settlement of arid regions over the country. A comparative and correlation analysis was performed between the physical dimensions collected through a walking experience in three campus routes (outdoor, semi-outdoor and indoor). In addition, a multisensory survey of the walking experience on perceptual dimensions was evaluated in parallel to the empirical contribution. The paper shows that walkers’ thermal levels were balanced between neural and slightly hot in different spatial aspects. The glare was almost unperceived regarding the luminous conditions in the study site. The auditory experience reveals that the conducted points were generally quiet and well placed for educational requirements. Findings also show a strong relationship between the physical dimensions of the luminous and auditory environment. Furthermore, the findings suggest that the thermal and luminous environments are more perceptible than the auditory environment for the walkers of the outdoor and indoor routes. In contrast, the semi-outdoor route is often perceptible by the perceptual dimensions of the luminous and auditory environments. The findings on sensorial thresholds and spatial adaption are essential for the educational practices’ architectural and urban strategies for the Saharan cities and oasis settlements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.