We will investigate the optimal control strategy of an SIR epidemic model with time delay in state and control variables. We use a vaccination program to minimize the number of susceptible and infected individuals and to maximize the number of recovered individuals. Existence for the optimal control is established; Pontryagin’s maximum principle is used to characterize this optimal control, and the optimality system is solved by a discretization method based on the forward and backward difference approximations. The numerical simulation is carried out using data regarding the course of influenza A (H1N1) in Morocco. The obtained results confirm the performance of the optimization strategy.
This work is considered in the framework of studies dedicated to the control problems, especially in epidemiology where the scientist are concerned to develop effective control strategies to minimize the number of infected individuals. In this paper, we set this problem as an asymptotic target control problem under mixed state-control constraints, for a general class of ordinary differential equations that model the temporal evolution of disease spread. The set of initial data, from which the number of infected people decrease to zero, is generated by a new type of Lyapunov functions defined in the sense of viability theory. The associated controls are provided via selections of adequately designed feedback map. The existence of such selections is improved by using Micheal selection theorem. Finally, an application to the SIRS epidemic model, with numerical simulations, is given to show the efficiency of our approach. To the best of our knowledge, our work is the first one that used a set-valued approach based on the viability theory to deal with an epidemic control problem.
In this paper, we formulate an optimal control problem based on a tuberculosis model with multiple infectious compartments and time delays. In order to have a more realistic model that allows highlighting the role of detection, loss to follow-up and treatment in TB transmission, we propose an extension of the classical SEIR model by dividing infectious patients in the compartment (I) into three categories: undiagnosed infected (I), diagnosed patients who are under treatment (T) and diagnosed patients who are lost to follow-up (L). We incorporate in our model delays representing the incubation period and the time needed for treatment. We also introduce three control variables in our delayed system which represent prevention, detection and the efforts that prevent the failure of treatment. The purpose of our control strategies is to minimize the number of infected individuals and the cost of intervention. The existence of the optimal controls is investigated, and a characterization of the three controls is given using the Pontryagin's maximum principle with delays. To solve numerically the optimality system with delays, we present an adapted iterative method based on the iterative Forward-Backward Sweep Method (FBSM). Numerical simulations performed using Matlab are also provided. They indicate that the prevention control is the most effective one. To the best of our knowledge, it is the first work to apply optimal control theory to a TB model which considers infectious patients diagnosis, loss to follow-up phenomenon and multiple time delays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.