Coastal communities with road infrastructure close to the shoreline are vulnerable to the effects of sea level rise caused by climate change. The sea level in coastal New Hampshire is projected to rise by 3.9 to 6.6 ft (1.2 to 2.0 m) by 2100. Climate change vulnerability and adaptation studies have focused on surface water flooding caused by sea level rise; however, little attention has been given to the effects of climate change on groundwater. Groundwater is expected to rise with sea level rise and will intersect the unbound layers of coastal road infrastructure, thus reducing the service life of pavement. Vulnerability studies are an essential part of adaptation planning, and pavement engineers are looking for methods to identify roads that may experience premature failure. In this study, a regional groundwater flow model of coastal New Hampshire was used to identify road infrastructure for which rising groundwater will move into the unbound materials during the design life of the pavement. Multilayer elastic theory was used to analyze typical pavement profiles in several functional classifications of roadway to determine the magnitude of fatigue and rutting life reduction expected from four scenarios of sea level rise. All the evaluation sites experienced service life reduction, the magnitude and timing of which depended on the current depth to groundwater, the pavement structure, and the subgrade. The use of this methodology will enable pavement engineers to target coastal road adaptation projects effectively and will result in significant cost savings compared with implementation of broad adaptation projects or the costs of no action.
The study evaluates the electrical conductivity and mechanical performance of graphite modified asphalt mixtures. The effects of air voids, carbon fiber, and binder performance grade (PG) on the electrical resistivity of graphite modified asphalt mixtures are also assessed. Three graphite grades, two asphalt binders (polymer-modified PG 76-22 and neat PG 64-22), one aggregate type, and one carbon fiber were used to produce graphite modified asphalt mixtures. The mixtures were produced without graphite (control mix, PG 76-22), with only graphite (three grades and PG 76-22), with both graphite and 1% carbon fiber (three grades and PG 76-22), and with graphite (all three grades) and PG 64-22. The electrical conductivity, resistance to rutting, resistance to cracking, and durability of these mixes were evaluated using electrical resistivity (using a multi-meter), asphalt pavement analyzer, Hamburg wheel tracking device, semi-circular bend, indirect tension cracking, and Cantabro loss tests. Test results showed that graphite improves the electrical conductivity of asphalt mixtures when added at dosages of 10% to 15% or higher by volume of binder. Graphite grades with larger particle sizes helped improve the conductivity of asphalt mixtures better than graphite grades with smaller particle sizes. Air voids (higher air voids increased resistivity), carbon fiber dosage (decreased resistivity), and binder performance grade (neat binders had lower resistivity) affected the electrical resistivity of graphite modified asphalt mixtures. Furthermore, graphite modified mixes had better rutting resistance but higher susceptibility to breakdown and cracking when compared with unmodified mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.